my goal is to use a Keras model in a java program.
I export the keras model with model.export()
and not model.save() so I get well a folder with the model in .pb format.
Then I used py .\saved_model_cli.py show -- dir '.' -all
to see the inputs and outputs to fill in the java code.
I get that :
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
signature_def['__saved_model_init_op']:
The given SavedModel SignatureDef contains the following input(s):
The given SavedModel SignatureDef contains the following output(s):
outputs['__saved_model_init_op'] tensor_info:
dtype: DT_INVALID
shape: unknown_rank
name: NoOp
Method name is:
signature_def['serve']:
The given SavedModel SignatureDef contains the following input(s):
inputs['keras_tensor'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 6)
name: serve_keras_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['output_0'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 1)
name: StatefulPartitionedCall:0
Method name is: tensorflow/serving/predict
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['keras_tensor'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 6)
name: serving_default_keras_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['output_0'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 1)
name: StatefulPartitionedCall_1:0
Method name is: tensorflow/serving/predict
The MetaGraph with tag set ['serve'] contains the following ops: {'ReadVariableOp', 'Select', 'StatefulPartitionedCall', 'RestoreV2', 'NoOp', 'Identity', 'StaticRegexFullMatch', 'StringJoin', 'AssignVariableOp', 'SaveV2', 'MergeV2Checkpoints', 'VarIsInitializedOp', 'AddV2', 'VarHandleOp', 'DisableCopyOnRead', 'Pack', 'Placeholder', 'MatMul', 'Const', 'Relu', 'ShardedFilename'}
Concrete Functions:2024-11-12 16:47:24.597134: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Function Name: 'serve'
Option #1
Callable with:
Argument #1
keras_tensor: TensorSpec(shape=(None, 6), dtype=tf.float32, name='keras_tensor')
Finally, the java code to import and make a prediction is :
public static void importKerasModel() {
try (SavedModelBundle model = SavedModelBundle.load("PATH\kerasModel", "serve")) {
float[] x = {0.48f, 0.48f, 0.48f, 0.48f, 0.48f, 0.48f};
try (Tensor input = TFloat32.vectorOf(x);
Tensor output = model.session()
.runner()
.feed("serve_keras_tensor", input)
.fetch("StatefulPartitionedCall")
.run()
.get(0)) {
float prediction = output.dataType().getNumber();
System.out.println("prediction = " + prediction);
}
}
}
But I get this error message :
2024-11-12 17:26:01.089591: I tensorflow/cc/saved_model/loader.cc:317] SavedModel load for tags { serve }; Status: success: OK. Took 61548 microseconds.
2024-11-12 17:26:01.317247: W tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: INVALID_ARGUMENT: In[0] is not a matrix
[[{{node StatefulPartitionedCall/StatefulPartitionedCall/sequential_1/dense_1/Relu}}]]
Exception in thread "main" org.tensorflow.exceptions.TFInvalidArgumentException: In[0] is not a matrix
[[{{node StatefulPartitionedCall/StatefulPartitionedCall/sequential_1/dense_1/Relu}}]]
at org.tensorflow.internal.c_api.AbstractTF_Status.throwExceptionIfNotOK(AbstractTF_Status.java:76)
at org.tensorflow.Session.run(Session.java:826)
at org.tensorflow.Session$Runner.runHelper(Session.java:549)
at org.tensorflow.Session$Runner.run(Session.java:476)
at com.ptvgroup.platform.truckslogs.converter.HelloTensorFlow.importKerasModel(HelloTensorFlow.java:471)
at com.ptvgroup.platform.truckslogs.converter.Main.main(Main.java:25)
Someone can help me ? What does it means "In[0] is not a matrix" ? It's because my dimensions/shapes of the inputs and outputs are (-1,6) and (-1,1) ?
The error 'In[0] is not a matrix' comes from a wrong data type when I would like make a prediction. I create a tensor of vector instead a tensor of matrix. The exception message told well the value was not a matrix. The value concerned is the tensor of inputs.
public static void importKerasModel() {
try (SavedModelBundle model = SavedModelBundle.load("PATH", "serve")) {
float[] x = {200f,0f,1.5f,2f,2.5f,0f};
FloatNdArray matrix = NdArrays.ofFloats(Shape.of(1, 6)); // my model have 6 features per observations
matrix.set(NdArrays.vectorOf(x), 0);
try (Tensor input = TFloat32.tensorOf(matrix);
TFloat32 output = (TFloat32) model.session()
.runner()
.feed("serve_keras_tensor_272", input) ///## to know inputs and outputs py .\saved_model_cli.py show --dir '.' --all
.fetch("StatefulPartitionedCall")
.run()
.get(0)) {
float prediction = output.getFloat();;
System.out.println("prediction = " + prediction);
}
}
}
This code fix the failed execution.