I need to assign scores to each of the values in many columns of a pandas dataframe, depending on the percentile score range each value falls between.
I have created a function:
import pandas as pd
import numpy as np
def get_percentiles(x, percentile_array):
percentile_array = np.sort(np.array(percentile_array))
if x < x.quantile(percentile_array[0]) < 0:
return 1
elif (x >= x.quantile(percentile_array[0]) & (x < x.quantile(percentile_array[1]):
return 2
elif (x >= x.quantile(percentile_array[1]) & (x < x.quantile(percentile_array[2]):
return 3
elif (x >= x.quantile(percentile_array[2]) & (x < x.quantile(percentile_array[3]):
return 4
else:
return 5
Sample data:
df = pd.DataFrame({'col1' : [1,10,5,9,15,4],
'col2' : [4,10,15,19,3,2],
'col3' : [10,5,6,9,1,24]})
When I try to run the function using apply:
percentile_array = [0.05, 0.25, 0.5, 0.75]
df.apply(lambda x : get_percentiles(x, percentile_array), result_type = 'expand')
I get below error:
Truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all()
The expected output is new dataframe with 3 columns that has the scores between 1 and 5 depending on which percentile range each value in each column falls under
IIUC, you could use rank
to compute the percentile (per column), then pandas.cut
to bin the values to your reference:
percentile_array = [0.05, 0.25, 0.5, 0.75]
bins = [-np.inf]+percentile_array+[np.inf]
labels = [1, 2, 3, 4, 5]
out = (df.rank(pct=True)
.apply(lambda c: pd.cut(c, bins=bins, labels=labels))
)
Alternatively, with numpy.searchsorted
:
percentile_array = [0.05, 0.25, 0.5, 0.75]
bins = [-np.inf]+percentile_array+[np.inf]
out = pd.DataFrame(np.searchsorted(bins, df.rank(pct=True)),
columns=df.columns, index=df.index)
Output:
col1 col2 col3
0 2 3 5
1 5 4 3
2 3 5 3
3 4 5 4
4 5 3 2
5 3 2 5
Intermediate:
df.rank(pct=True)
col1 col2 col3
0 0.166667 0.500000 0.833333
1 0.833333 0.666667 0.333333
2 0.500000 0.833333 0.500000
3 0.666667 1.000000 0.666667
4 1.000000 0.333333 0.166667
5 0.333333 0.166667 1.000000
For the original function to work, you would have needed something like:
def get_percentiles(x, percentile_array):
percentile_array = np.sort(np.array(percentile_array))
m1 = x < x.quantile(percentile_array[0])
m2 = (x >= x.quantile(percentile_array[0])) & (x < x.quantile(percentile_array[1]))
m3 = (x >= x.quantile(percentile_array[1])) & (x < x.quantile(percentile_array[2]))
m4 = (x >= x.quantile(percentile_array[2])) & (x < x.quantile(percentile_array[3]))
return np.select([m1, m2, m3, m4], [1, 2, 3, 4], 5)