pythonnumpyctypes

Python ctypes and np.array.ctypes.data_as unexpected behavior when indexing


Using Python ctypes and numpy library, I pass data to a shared library and encounter a very weird behavior

C function :

#include <stdio.h>
typedef struct {
    double *a;
    double *b;
} s_gate;
void printdouble(s_gate*, int);

void printdouble(s_gate *gate, int n) {
    for (int i =0; i < n; i++) {
        printf("gate->a[%d] = %f\n", i, gate->a[i]);
    }
    for (int i =0; i < n; i++) {
        printf("gate->b[%d] = %f\n", i, gate->b[i]);
    }
}

Python code :

import ctypes
import numpy as np
class s_gate(ctypes.Structure):
    _fields_ = [('a', ctypes.POINTER(ctypes.c_double)),
                ('b', ctypes.POINTER(ctypes.c_double))]

    def __init__(self, mydict:dict):
        mask = [True, False, True, True, True, True, False, False, False, True]
        a = np.ascontiguousarray(mydict['a'], dtype=np.double)
        b = np.ascontiguousarray(mydict['b'], dtype=np.double)
        setattr(self, 'a', a[0,:].ctypes.data_as(ctypes.POINTER(ctypes.c_double)))
        setattr(self, 'b', b[0,:].ctypes.data_as(ctypes.POINTER(ctypes.c_double)))
        self.size = 10 

if __name__ == "__main__":

    a = np.array([[1,2,3,4,5,6,7,8,9,10], [10,9,8,7,6,5,4,3,2,1]], dtype=np.double).T
    b = a + 100
    
    data = {'a': a, 'b': b}

    mylib = ctypes.CDLL('./mwe.so')
    mylib.printdouble.argstype = [ctypes.POINTER(s_gate), ctypes.c_int]
    mylib.printdouble.restype = ctypes.c_void_p
    print(f'Sending \n{a} and \n{b}')
    gate = s_gate(data)

    mylib.printdouble(ctypes.byref(gate), gate.size)

Running this code, I got the expected result, which is :

[[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.]
 [10.  9.  8.  7.  6.  5.  4.  3.  2.  1.]] and 
[[101. 102. 103. 104. 105. 106. 107. 108. 109. 110.]
 [110. 109. 108. 107. 106. 105. 104. 103. 102. 101.]]
gate->a[0] = 1.000000
gate->a[1] = 2.000000
gate->a[2] = 3.000000
gate->a[3] = 4.000000
gate->a[4] = 5.000000
gate->a[5] = 6.000000
...
gate->b[0] = 101.000000
gate->b[1] = 102.000000
gate->b[2] = 103.000000
gate->b[3] = 104.000000
gate->b[4] = 105.000000
gate->b[5] = 106.000000
...

Now, let's use the mask variable in the __init__ method of the s_gate class. So let's replace lines 11 and 12 with :

setattr(self, 'a', a[0,mask].ctypes.data_as(ctypes.POINTER(ctypes.c_double)))
setattr(self, 'b', b[0,mask].ctypes.data_as(ctypes.POINTER(ctypes.c_double)))
self.size = sum(mask)

The results is now :

gate->a[0] = 0.000000
gate->a[1] = 0.000000
gate->a[2] = 0.000000
gate->a[3] = 0.000000
gate->a[4] = 0.000000
gate->a[5] = 0.000000
gate->b[0] = 101.000000
gate->b[1] = 103.000000
gate->b[2] = 104.000000
gate->b[3] = 105.000000
gate->b[4] = 106.000000
gate->b[5] = 110.000000

All gate.a data is zeroed ! The expected result is of course [1, 3, 4, 5, 6, 10] for gate.a

What I tried so far :

Use np.require, np.ascontiguousarray to ensure C contiguous array, perform integer indexing instead of logical indexing, perform 2D logical indexing (array[slices_xy] instead of array[slice_x, slice_y]).
Use various copy, deepcopy methods and create an intermediate data with the first slicing...

Nothing worked, as soon as the slice that maskdescribe in this code appears (instead of :), this behavior appears. What goes wrong ?


Solution

  • The memory is being freed for the masked arrays creating undefined behavior. Likely the a pointer's memory is reused but the b pointer happens to still be the same. Both are freed though.

    Create the masked arrays and hold a reference to them in the s_gate object, then it works:

    import ctypes as ct
    import numpy as np
    
    PDOUBLE = ct.POINTER(ct.c_double)
    
    class s_gate(ct.Structure):
        _fields_ = [('a', PDOUBLE),
                    ('b', PDOUBLE)]
    
        def __init__(self, a, b):
            mask = [True, False, True, True, True, True, False, False, False, True]
            self.tmpa = a[0,mask]  # hold a reference to the arrays
            self.tmpb = b[0,mask]
            self.a = self.tmpa.ctypes.data_as(PDOUBLE)  # get pointers to the arrays
            self.b = self.tmpb.ctypes.data_as(PDOUBLE)
            self.size = sum(mask)
    
    a = np.array([[1,2,3,4,5,6,7,8,9,10], [10,9,8,7,6,5,4,3,2,1]], dtype=np.double)
    b = a + 100
    
    mylib = ct.CDLL('./test')
    mylib.printdouble.argstype = ct.POINTER(s_gate), ct.c_int
    mylib.printdouble.restype = ct.c_void_p
    print(f'Sending \n{a} and \n{b}')
    gate = s_gate(a, b)
    
    mylib.printdouble(ct.byref(gate), gate.size)
    

    Output:

    [[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.]
     [10.  9.  8.  7.  6.  5.  4.  3.  2.  1.]] and
    [[101. 102. 103. 104. 105. 106. 107. 108. 109. 110.]
     [110. 109. 108. 107. 106. 105. 104. 103. 102. 101.]]
    gate->a[0] = 1.000000
    gate->a[1] = 3.000000
    gate->a[2] = 4.000000
    gate->a[3] = 5.000000
    gate->a[4] = 6.000000
    gate->a[5] = 10.000000
    gate->b[0] = 101.000000
    gate->b[1] = 103.000000
    gate->b[2] = 104.000000
    gate->b[3] = 105.000000
    gate->b[4] = 106.000000
    gate->b[5] = 110.000000