I often have code that looks like
rbind.oc.by <- function (indata, INDICES, FUN, ...) {
result <- by( indata, INDICES, FUNIN, ... )
t(simplify2array(result))
}
mynewdata <- rbind.oc.by( dataframe, dataframe$variable, function(dd) { with(dd, ... } )
So, I am testing it out:
set.seed(0)
if (!exists("X")) {
X <- lapply( 1:10000000, function(i) {
c(a=rnorm(1), b=rnorm(1), x="A", y= as.logical(rnorm(1)))
})
}
## R CMD Rprof testprof.out
Rprof("testprof.out")
intimealloc <- function() {
as.data.frame(do.call("rbind", X))
}
v1 <- intimealloc()
firstalloc <- function() {
simplify2array( t( X ))
}
v2 <- firstalloc()
Rprof(NULL)
simplify2array()
is pretty good, about 8 times faster than do.call("rbind")
. yet, I am still wondering whether there is a way to write a faster specialized version of simplify2array()
that relies on the fact that results are either NULL or all the same data frame. presumably not, but I thought I would ask.
You could try unlist() |> array() |> t()
to remove possible overhead (see lapply2 below) or or unlist() |> matrix(byrow=TRUE)
to avoid transposing (see lapply3). However, instead of by()
you could use split() |> lapply() |> simplify2array() |> t()
or split() |> sapply() |> t()
, since sapply()
is like lapply()
with integrated simplify2array()
, or vapply()
:
$ Rscript --vanilla foo.R
Unit: milliseconds
expr min lq mean median uq max neval cld
by 759.6597 775.2684 833.4783 828.0770 854.1466 983.1176 10 a
lapply 747.4017 753.7931 812.9594 824.6948 842.5910 893.2388 10 a
lapply2 763.0132 769.7017 819.1545 811.0160 856.1791 904.2550 10 a
lapply3 759.2881 777.8115 822.4855 826.9304 833.3351 945.4514 10 a
sapply 764.3702 785.1906 805.3541 802.4946 821.7591 858.9353 10 a
vapply 744.5296 746.5801 780.0658 767.1196 810.6612 840.4624 10 a
It just depends on what exactly you do in *apply()
and whether the tradeoff is beneficial for writing custom code.
set.seed(42)
mtcarsh <- mtcars[sample.int(nrow(mtcars), 1e6, replace=TRUE), ]
n <- length(unique(mtcarsh$am))
m <- ncol(mtcarsh)
microbenchmark::microbenchmark(
by=by(mtcarsh, mtcarsh$am, colMeans) |> do.call(what='rbind'),
lapply=split(mtcarsh, mtcarsh$am) |> lapply(colMeans) |> simplify2array() |> t(),
lapply2=split(mtcarsh, mtcarsh$am) |> lapply(colMeans) |> unlist() |>
array(c(m, n), list(colnames(mtcarsh), unique(mtcarsh$am))) |> t(),
lapply3=split(mtcarsh, mtcarsh$am) |> lapply(colMeans) |> unlist() |>
matrix(c(n, m), byrow=TRUE) |> `dimnames<-`(list(unique(mtcarsh$am), colnames(mtcarsh))),
sapply=split(mtcarsh, mtcarsh$am) |> sapply(colMeans) |> t(),
vapply=split(mtcarsh, mtcarsh$am) |> vapply(colMeans, FUN.VALUE=numeric(m)) |> t(),
check='equal', times=10L
)