I'd like to load a subset of tables from production Azure SQL to Lakehouse for further processing to do analytics. I'd like to anonymize columns like email, user's name etc in the dataflow pipeline Gen2 as the data is read from Azure Sql and written to Lakehouse. How do I go about doing it?
You can use Presidio and Azure Databricks to help you with the anonymization of sensitive data. Here you will find a full step-by-step guide on how you can call Presidio as a Databricks notebook job in the Azure Data Factory (ADF) pipeline to transform the input dataset before you merge the results in a Data Lake or Storage Account.
Alternatively, you can use a T-SQL user-defined function that can tokenize and anonymize sensitive data, such as email addresses and phone numbers. It can be something like:
CREATE FUNCTION dbo.TokenizeSensitiveData (@input NVARCHAR(MAX))
RETURNS NVARCHAR(MAX)
AS
BEGIN
DECLARE @output NVARCHAR(MAX)
SET @output = @input
-- Replace email addresses with a token
SET @output = dbo.ReplacePattern(@output, '[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}', 'EMAIL_TOKEN')
-- Replace phone numbers with a token
SET @output = dbo.ReplacePattern(@output, '\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', 'PHONE_TOKEN')
RETURN @output
END
GO
-- Helper function to replace patterns
CREATE FUNCTION dbo.ReplacePattern (@input NVARCHAR(MAX), @pattern NVARCHAR(MAX), @replacement NVARCHAR(MAX))
RETURNS NVARCHAR(MAX)
AS
BEGIN
DECLARE @output NVARCHAR(MAX)
SET @output = @input
WHILE PATINDEX('%' + @pattern + '%', @output) > 0
BEGIN
SET @output = STUFF(@output, PATINDEX('%' + @pattern + '%', @output), LEN(@pattern), @replacement)
END
RETURN @output
END
GO
You can call the TokenizeSensitiveData function from within a SELECT in a view. For example:
SELECT dbo.TokenizeSensitiveData('Send e-mail to john.doe@example.com or call him at 123-456-7890.')
Create a T-SQL View for each set of data you want to send to the Lakehouse.