I'm trying to find a better/faster way to do this. I have a rather large dataset (~200M rows) with individual dates per row. I want to find the average yearly rate per group from 2018 to 2019. I know I could create a small df with the results and merge it back in but, I was trying to find a way to use transform. Not sure if it would just be faster to merge. Extra points for one-liners.
Sample data
rng = np.random.default_rng(seed=123)
df = pd.DataFrame({'group':rng.choice(list('ABCD'), 100),
'date':[(pd.to_datetime('2018')+pd.Timedelta(days=x)).normalize() for x in rng.integers(0, 365*5, 100)],
'foo':rng.integers(1, 100, 100),
'bar':rng.integers(50, 200, 100)})
df['year'] = df['date'].dt.year
This works
#find average 2018 and 2019 'foo' and 'bar'
for col in ['foo', 'bar']:
for y in [2018, 2019]:
df[col+'_'+str(y)+'_total'] = df.groupby('group')['year'].transform(lambda x: df.loc[x.where(x==y).dropna().index, col].sum())
#find 2018 and 2019 rates
for y in [2018, 2019]:
df['rate_'+str(y)] = df['foo_'+str(y)+'_total'].div(df['bar_'+str(y)+'_total'])
#find average rate
df['2018_2019_avg_rate'] = df[['rate_2018', 'rate_2019']].mean(axis=1)
Thing's I've tried that don't quite work (I'm using apply
to test if it works before switching to transform
)
#gives yearly totals for each year and each column, but further 'apply'ing to find rates then averaging isn't working after I switch to transform
df.groupby(['group', 'year'])['year'].apply(lambda x: df.loc[x.where(x.between(2018, 2019)).dropna().index, ['foo', 'bar']].sum())
#close but is averaging too early
df.groupby(['group', 'year'])['year'].apply(lambda x: df.loc[i, 'foo'].sum()/denom if (denom:=df.loc[i:=x.where(x.between(2018, 2019)).dropna().index, 'bar'].sum())>0 else np.nan)
You can't perform multiple filtering/aggregations efficiently with a groupby.transform
. You will have to loop.
A more efficient approach would be to combine a pivot_table
+ merge
:
cols = ['foo', 'bar']
years = [2018, 2019]
tmp = (df[df['year'].isin(years)]
.pivot_table(index='group', columns='year',
values=cols, aggfunc='sum')
[cols]
.pipe(lambda x: x.join(pd.concat({'rate': x['foo'].div(x['bar'])}, axis=1)))
)
avg_rate = tmp['rate'].mean(axis=1)
tmp.columns = tmp.columns.map(lambda x: f'{x[0]}_{x[1]}_total')
tmp[f'{"_".join(map(str, years))}_avg_rate'] = avg_rate
out = df.merge(tmp, left_on='group', right_index=True)
Output:
group date foo bar year foo_2018_total foo_2019_total bar_2018_total bar_2019_total rate_2018_total rate_2019_total 2018_2019_avg_rate
0 A 2022-03-11 59 91 2022 343 270 972 875 0.352881 0.308571 0.330726
1 C 2018-08-22 56 52 2018 175 325 331 902 0.528701 0.360310 0.444506
2 C 2019-04-24 47 89 2019 175 325 331 902 0.528701 0.360310 0.444506
3 A 2019-04-16 43 102 2019 343 270 972 875 0.352881 0.308571 0.330726
4 D 2019-11-25 3 56 2019 126 222 224 696 0.562500 0.318966 0.440733
5 A 2018-01-06 86 148 2018 343 270 972 875 0.352881 0.308571 0.330726
...
99 B 2018-02-25 32 90 2018 253 204 703 400 0.359886 0.510000 0.434943