pythonmachine-learningpytorchobject-detectionyolo

How to extract the predictions on the validation set, at each epoch when using YOLO v8 DETECT TRAIN for object detection?


I am using the CLI version of the yolo model yolov8l.pt (accessed through the WEIGHTS parameter below):

!yolo detect train model={WEIGHTS} data='data/tvt3_data_v8.yaml' single_cls imgsz={IMG_SIZE} batch={BATCH_SIZE} epochs={3}

How it currently works

During training, at each epoch:

At the end of the training, the best.pt model is selected and evaluated on the validation set.

What I need from the script

At each epoch, I want to extract the predictions made on the VALIDATION dataset

How do I do this?


Solution

  • I am not sure that you have checked or now, but this script is easily available, here is a script that I made for my work and modified according to your need:

    from ultralytics import YOLO
    import torch
    from pathlib import Path
    import json
    from datetime import datetime
    
    class ValidationPredictionCallback:
        def __init__(self, save_dir='validation_predictions'):
            self.save_dir = Path(save_dir)
            self.save_dir.mkdir(exist_ok=True, parents=True)
        
        def save_predictions(self, validator, epoch):
            predictions = []
            
            # Iterate through validation set predictions
            for batch_idx, (batch_images, batch_outputs) in enumerate(validator.dataloader):
                # Get predictions for this batch
                results = validator.model(batch_images)
                
                for img_idx, result in enumerate(results):
                    # Get image path
                    img_path = validator.dataloader.dataset.im_files[batch_idx * validator.dataloader.batch_size + img_idx]
                    
                    # Extract boxes, scores, and classes
                    boxes = result.boxes.xyxy.cpu().numpy()
                    scores = result.boxes.conf.cpu().numpy()
                    classes = result.boxes.cls.cpu().numpy()
                    
                    # Store predictions for this image
                    img_predictions = {
                        'image_path': img_path,
                        'predictions': [{
                            'bbox': box.tolist(),
                            'confidence': float(score),
                            'class': int(cls)
                        } for box, score, cls in zip(boxes, scores, classes)]
                    }
                    predictions.append(img_predictions)
            
            # Save predictions for this epoch
            output_file = self.save_dir / f'epoch_{epoch}_predictions.json'
            with open(output_file, 'w') as f:
                json.dump(predictions, f, indent=2)
            
            print(f"Saved validation predictions to {output_file}")
    
    def train_with_validation_predictions(
        weights='yolov8l.pt',
        data='data/tvt3_data_v8.yaml',
        img_size=640,
        batch_size=16,
        epochs=3,
        single_cls=True
    ):
        # Initialize model
        model = YOLO(weights)
        
        # Create callback
        val_callback = ValidationPredictionCallback(
            save_dir=f'validation_predictions_{datetime.now().strftime("%Y%m%d_%H%M%S")}'
        )
        
        # Custom training loop
        model.train(
            data=data,
            imgsz=img_size,
            batch=batch_size,
            epochs=epochs,
            single_cls=single_cls,
            callbacks={
                'on_val_end': lambda validator: val_callback.save_predictions(
                    validator, 
                    validator.epoch
                )
            }
        )
        
        return model
    
    # Example usage
    if __name__ == "__main__":
        model = train_with_validation_predictions(
            weights='yolov8l.pt',
            data='data/tvt3_data_v8.yaml',
            img_size=640,
            batch_size=16,
            epochs=3,
            single_cls=True
        )
    

    To run:

    from train_yolo import train_with_validation_predictions
    
    model = train_with_validation_predictions(
        weights='yolov8l.pt',
        data='data/tvt3_data_v8.yaml'
    )
    

    Ouptut will look like:

    [
      {
        "image_path": "path/to/image.jpg",
        "predictions": [
          {
            "bbox": [x1, y1, x2, y2],
            "confidence": 0.95,
            "class": 0
          }
          // ... more predictions
        ]
      }
      // ... more images
    ]