My understanding is that DataFrames do not support MultiIndexing, which generally does not pose much problems, but translating some pythonic habits to Julia poses difficulties. I wonder how one could load and subselect features by columns, as in the example below.
import numpy as np
import pandas as pd
#generating sample data
nsmpls = 10
smpls = [f'smpl{j}' for j in range(nsmpls)]
nfeats = 5
feats = [f'feat{j}' for j in range(nfeats)]
data = np.random.rand(nfeats, nsmpls)
countries = ['France'] * 2 + ['UK'] * 3 + ['US'] * 5
df = pd.DataFrame(data, index=feats, columns=pd.MultiIndex.from_tuples(zip(countries, smpls)))
df.to_csv('./data.tsv', sep='\t')
#---------------------------------------------------------------------
#loading dataset
df = pd.read_csv('./data.tsv', sep='\t', index_col=0, header=[0,1])
#extracting subset
dg = df.xs('France', level=0, axis=1)
print(dg.shape)
#iterating
for country, group in df.groupby(level=0, axis=1):
print('#samples: {}'.format(group.shape[1]))
Something like this ?
using DataFrames, CSV
# Used your sample data
df = DataFrame(CSV.File("data.tsv"))
# Filter the columns by country name
france_cols = findall(x -> occursin("France", x), names(df))
# Subset the df
dg = select(df, france_cols)
# Optional : use "sampleX" as col names instead of the country name
rename!(dg, collect(dg[1, :]))
dg = dg[2:end, :]
display(dg)
println(size(dg))
By default, DataFrames adds numbers to similar column names like this : France, France_1 etc so I selected all the columns containing "France".