I have a DataFrame that I need to separate columns when there are commas. The problem is when I have columns that are all null. In the example below, I need a DataFrame with the columns "mpg", "wt_0", "wt_1" and "carb_0".
How can I unnest struct columns without dropping empty structs?
library(polars)
mtcars$carb <- NA_real_
dt <- as_polars_df(mtcars)
dt$select(
pl$col("mpg"),
wt = pl$col("wt")$cast(pl$String)$str$replace("\\.", ","),
carb = pl$col("carb")$cast(pl$String)$str$replace("\\.", ",")
)$with_columns(
pl$col("wt")$str$split(",")$list$to_struct(
fields = \(x) paste0("wt_", x),
n_field_strategy = "max_width"
),
pl$col("carb")$str$split(",")$list$to_struct(
fields = \(x) paste0("carb_", x),
n_field_strategy = "max_width"
)
)$unnest()
shape: (32, 3)
┌──────┬──────┬──────┐
│ mpg ┆ wt_0 ┆ wt_1 │
│ --- ┆ --- ┆ --- │
│ f64 ┆ str ┆ str │
╞══════╪══════╪══════╡
│ 21.0 ┆ 2 ┆ 62 │
│ 21.0 ┆ 2 ┆ 875 │
│ 22.8 ┆ 2 ┆ 32 │
│ 21.4 ┆ 3 ┆ 215 │
│ 18.7 ┆ 3 ┆ 44 │
│ … ┆ … ┆ … │
│ 30.4 ┆ 1 ┆ 513 │
│ 15.8 ┆ 3 ┆ 17 │
│ 19.7 ┆ 2 ┆ 77 │
│ 15.0 ┆ 3 ┆ 57 │
│ 21.4 ┆ 2 ┆ 78 │
└──────┴──────┴──────┘
df.with_columns(
pl.col("wt", "carb").cast(pl.String).str.replace(r"[.]", ","),
).with_columns(
pl.col("wt").str.split(",")
.list.to_struct("max_width", fields=lambda n: f"wt_{n}"),
pl.col("carb").str.split(",")
.list.to_struct("max_width", fields=lambda n: f"carb_{n}")
).unnest("wt", "carb")
If carb
is not null, the output is as expected.
df = pl.read_csv(b"""mpg,wt,carb
1,1.2,2.3
2,3.4,4.5""")
# shape: (2, 5)
# ┌─────┬──────┬──────┬────────┬────────┐
# │ mpg ┆ wt_0 ┆ wt_1 ┆ carb_0 ┆ carb_1 │
# │ --- ┆ --- ┆ --- ┆ --- ┆ --- │
# │ i64 ┆ str ┆ str ┆ str ┆ str │
# ╞═════╪══════╪══════╪════════╪════════╡
# │ 1 ┆ 1 ┆ 2 ┆ 2 ┆ 3 │
# │ 2 ┆ 3 ┆ 4 ┆ 4 ┆ 5 │
# └─────┴──────┴──────┴────────┴────────┘
If carb
is null, there is no carb_0
column in the output.
df = pl.read_csv(b"""mpg,wt,carb
1,1.2,
2,3.4,""")
# shape: (2, 3)
# ┌─────┬──────┬──────┐
# │ mpg ┆ wt_0 ┆ wt_1 │
# │ --- ┆ --- ┆ --- │
# │ i64 ┆ str ┆ str │
# ╞═════╪══════╪══════╡
# │ 1 ┆ 1 ┆ 2 │
# │ 2 ┆ 3 ┆ 4 │
# └─────┴──────┴──────┘
In Python what comes to mind is to .fill_null([None])
after the .str.split()
in order to have a single null field to unnest.
shape: (2, 3)
┌─────┬─────┬───────────┐
│ mpg ┆ wt ┆ carb │
│ --- ┆ --- ┆ --- │
│ i64 ┆ str ┆ list[str] │
╞═════╪═════╪═══════════╡
│ 1 ┆ 1,2 ┆ [null] │
│ 2 ┆ 3,4 ┆ [null] │
└─────┴─────┴───────────┘
I don't know R, but trying to look at the r-polars docs, it seems pl$lit(list(NA))
may be the equivalent?
import polars as pl
df = pl.read_csv(b"""
mpg,wt,carb
1,1.2,
2,3.4,
""".strip())
(
df.with_columns(
pl.col("wt", "carb").cast(pl.String).str.replace(r"[.]", ",")
)
.with_columns(
pl.col("wt").str.split(",")
.fill_null([None])
.list.to_struct(
fields = lambda n: f"wt_{n}",
n_field_strategy = "max_width"
),
pl.col("carb").str.split(",")
.fill_null([None])
.list.to_struct(
fields = lambda n: f"carb_{n}",
n_field_strategy = "max_width"
)
)
.unnest("wt", "carb")
)
shape: (2, 4)
┌─────┬──────┬──────┬────────┐
│ mpg ┆ wt_0 ┆ wt_1 ┆ carb_0 │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ str ┆ str ┆ str │
╞═════╪══════╪══════╪════════╡
│ 1 ┆ 1 ┆ 2 ┆ null │
│ 2 ┆ 3 ┆ 4 ┆ null │
└─────┴──────┴──────┴────────┘