rtreeigraphphylogenyggraph

How to plot UPGMA phylos with sub selection


First time working on a network in R, and I was looking into some possible packages/libraries to do so. There is this guide using ggraph that seems pretty complete and has some nice features I'm interested in.

I have some plots did in the past using ggtree based on PHYLO objects as inputs, so I tried to figure out whether there were ways to convert one into the other e.g. phylo -> igraph similar to what the guide is using.

I generated my PHYLO objects starting from a distance matrix with the upgma function from phangorn (see below), some issues were suggesting it is possible to convert phylo -> igraph with:

<network> <- as.igraph(<phylo>)

which is what I did. However, when following along the guide trying to subselect for a specific list to plot I'm getting the following error

Error in geom_edge_elbow0(): ! Problem while computing aesthetics. ℹ Error occurred in the 1st layer. Caused by error: ! object 'direction' not found Run rlang::last_trace() to see where the error occurred.

MWE

library(ape)
library(igraph)
library(ggraph)
library(network)
library(phangorn)

network <- as.igraph(phylo)
autograph(phylo)

networkS2 <- network[[2]] 
autograph(networkS2) #this is giving the error above

dput() phylo

structure(list(edge = structure(c(309L, 309L, 308L, 308L, 307L, 
307L, 364L, 364L, 471L, 471L, 363L, 363L, 360L, 360L, 596L, 596L, 
593L, 593L, 606L, 606L, 605L, 605L, 599L, 599L, 597L, 597L, 592L, 
592L, 590L, 590L, 589L, 589L, 588L, 588L, 587L, 587L, 586L, 586L, 
584L, 584L, 581L, 581L, 580L, 580L, 576L, 576L, 574L, 574L, 573L, 
573L, 571L, 571L, 569L, 569L, 568L, 568L, 567L, 567L, 563L, 563L, 
585L, 585L, 562L, 562L, 551L, 551L, 550L, 550L, 540L, 540L, 558L, 
558L, 539L, 539L, 534L, 534L, 524L, 524L, 522L, 522L, 578L, 578L, 
607L, 607L, 603L, 603L, 598L, 598L, 577L, 577L, 566L, 566L, 542L, 
542L, 536L, 536L, 533L, 533L, 532L, 532L, 521L, 521L, 519L, 519L, 
535L, 535L, 518L, 518L, 514L, 514L, 583L, 583L, 582L, 582L, 575L, 
575L, 570L, 570L, 513L, 513L, 498L, 498L, 591L, 591L, 579L, 579L, 
537L, 537L, 531L, 531L, 530L, 530L, 497L, 497L, 496L, 496L, 495L, 
495L, 491L, 491L, 488L, 488L, 482L, 482L, 481L, 481L, 467L, 467L, 
466L, 466L, 463L, 463L, 462L, 462L, 461L, 461L, 457L, 457L, 454L, 
454L, 600L, 600L, 475L, 475L, 453L, 453L, 452L, 452L, 443L, 443L, 
440L, 440L, 439L, 439L, 433L, 433L, 426L, 426L, 445L, 445L, 442L, 
442L, 546L, 546L, 490L, 490L, 487L, 487L, 441L, 441L, 425L, 425L, 
422L, 422L, 561L, 561L, 560L, 560L, 489L, 489L, 459L, 459L, 507L, 
507L, 458L, 458L, 421L, 421L, 414L, 414L, 472L, 472L, 413L, 413L, 
397L, 397L, 396L, 396L, 395L, 395L, 394L, 394L, 393L, 393L, 465L, 
465L, 447L, 447L, 446L, 446L, 392L, 392L, 389L, 389L, 516L, 516L, 
477L, 477L, 436L, 436L, 416L, 416L, 388L, 388L, 384L, 384L, 493L, 
493L, 460L, 460L, 383L, 383L, 378L, 378L, 377L, 377L, 374L, 374L, 
373L, 373L, 372L, 372L, 480L, 480L, 479L, 479L, 444L, 444L, 432L, 
432L, 431L, 431L, 399L, 399L, 398L, 398L, 371L, 371L, 369L, 369L, 
437L, 437L, 418L, 418L, 417L, 417L, 376L, 376L, 375L, 375L, 368L, 
368L, 366L, 366L, 365L, 365L, 359L, 359L, 355L, 355L, 354L, 354L, 
353L, 353L, 352L, 352L, 351L, 351L, 350L, 350L, 565L, 565L, 564L, 
564L, 559L, 559L, 553L, 553L, 552L, 552L, 545L, 545L, 544L, 544L, 
572L, 572L, 555L, 555L, 601L, 601L, 554L, 554L, 547L, 547L, 543L, 
543L, 538L, 538L, 520L, 520L, 509L, 509L, 502L, 502L, 499L, 499L, 
492L, 492L, 468L, 468L, 456L, 456L, 526L, 526L, 549L, 549L, 525L, 
525L, 517L, 517L, 515L, 515L, 510L, 510L, 503L, 503L, 501L, 501L, 
505L, 505L, 504L, 504L, 500L, 500L, 486L, 486L, 485L, 485L, 484L, 
484L, 474L, 474L, 473L, 473L, 470L, 470L, 548L, 548L, 541L, 541L, 
529L, 529L, 523L, 523L, 512L, 512L, 511L, 511L, 494L, 494L, 469L, 
469L, 455L, 455L, 438L, 438L, 428L, 428L, 451L, 451L, 427L, 427L, 
424L, 424L, 420L, 420L, 412L, 412L, 506L, 506L, 478L, 478L, 434L, 
434L, 411L, 411L, 408L, 408L, 556L, 556L, 528L, 528L, 423L, 423L, 
407L, 407L, 405L, 405L, 508L, 508L, 476L, 476L, 404L, 404L, 401L, 
401L, 450L, 450L, 604L, 604L, 527L, 527L, 449L, 449L, 406L, 406L, 
400L, 400L, 391L, 391L, 390L, 390L, 387L, 387L, 415L, 415L, 386L, 
386L, 382L, 382L, 381L, 381L, 370L, 370L, 362L, 362L, 361L, 361L, 
357L, 357L, 385L, 385L, 356L, 356L, 349L, 349L, 348L, 348L, 347L, 
347L, 346L, 346L, 345L, 345L, 344L, 344L, 343L, 343L, 342L, 342L, 
435L, 435L, 430L, 430L, 429L, 429L, 419L, 419L, 402L, 402L, 380L, 
380L, 410L, 410L, 483L, 483L, 409L, 409L, 379L, 379L, 367L, 367L, 
358L, 358L, 341L, 341L, 340L, 340L, 403L, 403L, 339L, 339L, 338L, 
338L, 337L, 337L, 336L, 336L, 595L, 595L, 602L, 602L, 594L, 594L, 
557L, 557L, 335L, 335L, 333L, 333L, 332L, 332L, 331L, 331L, 330L, 
330L, 327L, 327L, 326L, 326L, 325L, 325L, 448L, 448L, 324L, 324L, 
322L, 322L, 464L, 464L, 334L, 334L, 329L, 329L, 328L, 328L, 321L, 
321L, 320L, 320L, 323L, 323L, 319L, 319L, 318L, 318L, 317L, 317L, 
316L, 316L, 315L, 315L, 314L, 314L, 313L, 313L, 312L, 312L, 311L, 
311L, 310L, 310L, 306L, 306L, 305L, 305L, 301L, 302L, 303L, 304L, 
308L, 309L, 158L, 160L, 164L, 165L, 293L, 471L, 363L, 364L, 124L, 
289L, 85L, 596L, 76L, 108L, 110L, 606L, 152L, 605L, 247L, 599L, 
175L, 597L, 592L, 593L, 87L, 590L, 287L, 291L, 588L, 589L, 111L, 
587L, 296L, 586L, 238L, 584L, 237L, 581L, 248L, 580L, 299L, 576L, 
67L, 574L, 81L, 573L, 242L, 571L, 279L, 569L, 107L, 568L, 244L, 
567L, 127L, 235L, 119L, 585L, 562L, 563L, 243L, 249L, 550L, 551L, 
84L, 90L, 89L, 558L, 539L, 540L, 22L, 534L, 114L, 524L, 250L, 
252L, 131L, 167L, 102L, 607L, 103L, 603L, 205L, 598L, 577L, 578L, 
246L, 566L, 109L, 542L, 236L, 536L, 71L, 271L, 532L, 533L, 521L, 
522L, 104L, 112L, 57L, 535L, 518L, 519L, 88L, 105L, 73L, 74L, 
582L, 583L, 113L, 575L, 285L, 570L, 513L, 514L, 68L, 267L, 262L, 
591L, 245L, 579L, 217L, 537L, 99L, 222L, 530L, 531L, 497L, 498L, 
61L, 256L, 495L, 496L, 56L, 491L, 118L, 488L, 260L, 270L, 481L, 
482L, 132L, 177L, 466L, 467L, 75L, 463L, 2L, 261L, 461L, 462L, 
286L, 457L, 126L, 283L, 115L, 600L, 72L, 475L, 453L, 454L, 145L, 
452L, 125L, 443L, 70L, 258L, 439L, 440L, 54L, 433L, 42L, 116L, 
37L, 445L, 21L, 33L, 16L, 546L, 14L, 490L, 39L, 487L, 441L, 442L, 
425L, 426L, 62L, 64L, 63L, 269L, 560L, 561L, 284L, 489L, 259L, 
277L, 60L, 507L, 458L, 459L, 421L, 422L, 92L, 95L, 176L, 472L, 
413L, 414L, 58L, 397L, 40L, 232L, 395L, 396L, 98L, 394L, 6L, 
9L, 241L, 465L, 10L, 253L, 446L, 447L, 392L, 393L, 128L, 129L, 
155L, 516L, 122L, 477L, 290L, 436L, 59L, 416L, 388L, 389L, 263L, 
272L, 77L, 493L, 69L, 460L, 383L, 384L, 268L, 275L, 377L, 378L, 
117L, 121L, 373L, 374L, 218L, 219L, 7L, 220L, 479L, 480L, 91L, 
444L, 32L, 254L, 431L, 432L, 266L, 288L, 398L, 399L, 371L, 372L, 
173L, 264L, 101L, 437L, 45L, 265L, 417L, 418L, 130L, 133L, 375L, 
376L, 368L, 369L, 93L, 147L, 365L, 366L, 359L, 360L, 43L, 65L, 
354L, 355L, 274L, 353L, 29L, 153L, 351L, 352L, 27L, 46L, 49L, 
50L, 564L, 565L, 209L, 559L, 47L, 51L, 552L, 553L, 189L, 545L, 
212L, 213L, 215L, 572L, 48L, 123L, 55L, 601L, 554L, 555L, 211L, 
547L, 543L, 544L, 208L, 538L, 1L, 520L, 226L, 509L, 3L, 502L, 
216L, 499L, 52L, 492L, 23L, 468L, 200L, 210L, 198L, 204L, 199L, 
549L, 525L, 526L, 207L, 517L, 202L, 515L, 228L, 510L, 188L, 503L, 
4L, 19L, 17L, 201L, 504L, 505L, 500L, 501L, 297L, 486L, 203L, 
221L, 484L, 485L, 227L, 229L, 473L, 474L, 191L, 193L, 194L, 548L, 
190L, 541L, 192L, 529L, 196L, 523L, 195L, 197L, 511L, 512L, 172L, 
494L, 469L, 470L, 455L, 456L, 15L, 438L, 181L, 182L, 224L, 451L, 
427L, 428L, 44L, 424L, 225L, 420L, 8L, 11L, 38L, 506L, 13L, 478L, 
25L, 434L, 411L, 412L, 31L, 34L, 26L, 556L, 30L, 528L, 12L, 423L, 
407L, 408L, 28L, 135L, 5L, 508L, 134L, 476L, 404L, 405L, 183L, 
230L, 184L, 186L, 185L, 604L, 187L, 527L, 449L, 450L, 20L, 406L, 
400L, 401L, 214L, 391L, 36L, 390L, 166L, 174L, 223L, 415L, 386L, 
387L, 120L, 298L, 381L, 382L, 18L, 370L, 292L, 362L, 282L, 361L, 
171L, 239L, 240L, 385L, 356L, 357L, 349L, 350L, 231L, 234L, 347L, 
348L, 97L, 346L, 41L, 169L, 344L, 345L, 206L, 343L, 276L, 281L, 
280L, 435L, 179L, 180L, 429L, 430L, 278L, 419L, 273L, 402L, 82L, 
96L, 24L, 178L, 146L, 483L, 409L, 410L, 379L, 380L, 35L, 367L, 
144L, 358L, 341L, 342L, 251L, 257L, 66L, 403L, 339L, 340L, 168L, 
170L, 337L, 338L, 78L, 294L, 79L, 80L, 94L, 602L, 594L, 595L, 
86L, 557L, 335L, 336L, 100L, 137L, 332L, 333L, 141L, 233L, 330L, 
331L, 159L, 327L, 53L, 326L, 83L, 106L, 163L, 448L, 324L, 325L, 
136L, 139L, 149L, 464L, 143L, 334L, 138L, 140L, 328L, 329L, 321L, 
322L, 162L, 255L, 161L, 323L, 319L, 320L, 295L, 318L, 142L, 317L, 
157L, 316L, 156L, 315L, 154L, 314L, 150L, 300L, 312L, 313L, 148L, 
151L, 310L, 311L, 306L, 307L), dim = c(606L, 2L)), edge.length = c(0.0307016, 
0.0307016, 0.02898515, 0.02898515, 0.0514086, 0.04969215, 0.02388285, 
0.02388285, 0.01251565, 0.01251565, 0.0220297, 0.00951405, 0.00282003333333333, 
0.000966883333333331, 0.01171285, 0.01171285, 0.01397655, 0.0022637, 
0.00510305, 0.00510305, 0.00922095, 0.0041179, 0.01092335, 0.0017024, 
0.0131465375, 0.0022231875, 0.01368815, 0.000541612499999998, 
0.000882344444444445, 0.000593944444444444, 0.0152030555555556, 
0.00063256111111111, 0.0125332, 0.0125332, 0.0029825175, 0.000312661944444447, 
0.0159078791666667, 0.000392161666666665, 0.0163510115384615, 
0.000443132371794872, 0.016485925, 0.000134913461538464, 0.0167044866666667, 
0.000218561666666669, 0.016946990625, 0.000242503958333327, 0.0173213617647059, 
0.000374371139705884, 0.017651925, 0.000330563235294117, 0.0177760157894737, 
0.000124090789473688, 0.0179986175, 0.000222601710526318, 0.0181554523809524, 
0.000156834880952375, 0.0184089681818182, 0.000253515800865797, 
0.0185544673913043, 0.000145499209486168, 0.01063585, 0.01063585, 
0.016443225, 0.005807375, 0.00224374236111111, 0.000132499969806767, 
0.0168432, 0.0168432, 0.00234115925925926, 0.000497391898148146, 
0.0185386, 0.0185386, 0.0189516, 0.000413, 0.00072945459770115, 
0.000496695338441891, 0.0198197625, 0.000138707902298852, 0.0201836393939394, 
0.00036387689393939, 0.0155706, 0.0155706, 0.000265739, 0.000265739, 
0.006800875, 0.006535136, 0.0123511166666667, 0.00555024166666667, 
0.0136080875, 0.00125697083333333, 0.0036118625, 0.00164935, 
0.01855765, 0.0013377, 0.0196404875, 0.0010828375, 0.0198126166666667, 
0.000172129166666663, 0.01848395, 0.01848395, 0.001450465, 0.000121798333333339, 
0.000468848725490197, 0.000219624331550809, 0.0190582, 0.0190582, 
0.019818575, 0.000760374999999997, 0.000841392391304357, 0.000256703665814154, 
0.01588685, 0.01588685, 0.01433025, 0.01433025, 0.0021715, 0.000614899999999998, 
0.017496, 0.000994250000000002, 0.01808679, 0.000590789999999997, 
0.00276559724489796, 0.000192419853593605, 0.01152075, 0.01152075, 
0.014874025, 0.003353275, 0.0171760333333333, 0.00230200833333333, 
0.0197968375, 0.00262080416666666, 0.01861575, 0.01861575, 0.00136178, 
0.000180692500000003, 0.00132865727272727, 0.000453800027829313, 
0.0192489, 0.0192489, 0.00209064193548386, 3.3354662756592e-05, 
0.0215209296875, 0.000181387752016138, 0.0215735115384615, 5.25818509615368e-05, 
0.0193239, 0.0193239, 0.00260291553030303, 0.00035330399184149, 
0.02068765, 0.02068765, 0.00139965330882353, 0.000160487778520499, 
0.0221838285714286, 9.6525262605035e-05, 0.01941155, 0.01941155, 
0.0027909411971831, 1.86626257545341e-05, 0.0223295095890411, 
0.000127018391857994, 0.00274994, 0.00274994, 0.013131975, 0.010382035, 
0.0220170666666667, 0.00888509166666667, 0.0003992981981982, 
8.68552758237773e-05, 0.0224844288461538, 6.80639812889808e-05, 
0.0226529341772152, 0.000168505331061334, 0.0213103, 0.0213103, 
0.00147878937499999, 0.000136155197784812, 0.0229256957317073, 
0.000136606356707328, 0.00258447, 0.00258447, 0.022597625, 0.020013155, 
0.01632715, 0.01632715, 0.019387725, 0.003060575, 0.02154705, 
0.002159325, 0.021662275, 0.000115225, 0.00102742833333334, 9.20783333333355e-05, 
0.000398026335341358, 0.000162033936967371, 0.01662375, 0.01662375, 
0.0134931, 0.0134931, 0.005259025, 0.002128375, 0.0215488625, 
0.0027967375, 0.01892775, 0.01892775, 0.020934825, 0.002007075, 
0.00134325833333334, 0.000729220833333332, 0.000991892353479854, 
0.000182246018138495, 0.01185095, 0.01185095, 0.022024775, 0.010173825, 
0.00151970361952862, 0.000274502932715436, 0.0239939789215686, 
0.000449500302040006, 0.02303655, 0.02303655, 0.00101721747572815, 
5.9788554159522e-05, 0.0241002904761905, 4.65230004623243e-05, 
0.0201562, 0.0201562, 0.02215975, 0.00200355, 0.0206365, 0.0206365, 
0.00191485, 0.000391599999999999, 0.00158324424528302, 3.4303769092546e-05, 
0.0139138, 0.0139138, 0.020782325, 0.006868525, 0.0220077166666667, 
0.00122539166666667, 0.0228442625, 0.000836545833333334, 0.02348024, 
0.000635977499999999, 0.000760738078078086, 0.000106383832795064, 
0.017693, 0.017693, 0.021393025, 0.003700025, 0.0222274166666667, 
0.000834391666666663, 0.00216500502136752, 0.000151443609956104, 
0.02086155, 0.02086155, 0.00359731900826447, 6.64473202302805e-05, 
0.02274275, 0.02274275, 0.00175840589430894, 4.2286886044466e-05, 
0.02048155, 0.02048155, 0.0190841, 0.0190841, 0.002899325, 0.001501875, 
0.0226132125, 0.0006297875, 0.021121, 0.021121, 0.00183246, 0.000340247499999998, 
0.02261725, 0.02261725, 0.00137562857142857, 0.00103941857142857, 
0.000569709606349202, 6.14322834688354e-05, 0.01255145, 0.01255145, 
0.022816725, 0.010265275, 0.02006785, 0.02006785, 0.00335748333333333, 
0.000608608333333333, 0.02042685, 0.02042685, 0.0040693, 0.00107081666666667, 
0.000214470255863543, 0.000148032078085773, 0.0241037, 0.0241037, 
0.000730640425531916, 0.00012372016966837, 0.000136489364677875, 
0.000121096456876458, 0.02087275, 0.02087275, 0.00416444138513514, 
6.6361594925346e-05, 0.0250503533333333, 1.31619481981878e-05, 
0.0222316, 0.0222316, 0.00284971639072848, 3.0963057395153e-05, 
0.0181677, 0.0181677, 0.01777785, 0.01777785, 0.000858224999999997, 
0.000468375, 0.0189242625, 0.000288187499999999, 0.0188373, 0.0188373, 
0.000320444999999999, 0.000233482500000003, 0.0193911142857143, 
0.000233369285714283, 0.0177393, 0.0177393, 0.01789285, 0.000153550000000002, 
0.0003169235, 0.0003169235, 0.012524775, 0.0122078515, 0.00662626388888889, 
0.00125818888888889, 0.0193541833333333, 0.000203144444444445, 
0.000245348809523805, 0.000208417857142856, 0.01971932, 0.00011978785714286, 
0.020492434375, 0.000773114375000005, 0.0208802411764706, 0.000387806801470589, 
0.021118875, 0.000238633823529406, 0.0212264868421053, 0.000107611842105265, 
0.021448985, 0.00022249815789474, 0.0220864452380952, 0.000637460238095234, 
0.0197895, 0.0197895, 0.0188808, 0.0188808, 0.019243275, 0.000362475000000001, 
0.00082713333333333, 0.00028090833333333, 0.02075806, 0.000687651666666671, 
0.0208352666666667, 7.72066666666661e-05, 0.0208694785714286, 
3.42119047619036e-05, 0.02107821875, 0.000208740178571431, 0.01951255, 
0.01951255, 0.01781995, 0.01781995, 0.0031871, 0.0014945, 0.00018883888888889, 
0.000117670138888887, 0.0217424769230769, 0.000546588034188035, 
0.0191409, 0.0191409, 0.00274139285714286, 0.000139815934065934, 
0.01881415, 0.01881415, 0.00320304375, 0.000134900892857146, 
0.01854425, 0.01854425, 0.01934565, 0.000801399999999997, 0.0196740166666667, 
0.000328366666666666, 0.0200327875, 0.000358770833333334, 0.02034143, 
0.000308642500000001, 0.0196282, 0.0196282, 0.00122996666666667, 
0.000516736666666667, 0.02137269375, 0.000514527083333331, 0.000697811805555556, 
5.33118055555497e-05, 0.000316152020202028, 0.000300212337662344, 
0.0227904010204082, 0.000403743444650582, 0.02213835, 0.02213835, 
0.022503675, 0.000365325, 0.000541843333333337, 0.000255117312925175, 
0.0231050613207547, 5.95429874213765e-05, 0.0232874611111111, 
0.000182399790356402, 0.0186606, 0.0186606, 0.0209492, 0.0022886, 
0.02199555, 0.00104635, 0.0228586375, 0.000863087499999998, 0.000738425409090908, 
0.000309601797979793, 0.01666655, 0.01666655, 0.01903995, 0.0023734, 
0.0200596833333333, 0.00101973333333333, 0.0231785375, 0.00311885416666667, 
0.000507636333333332, 8.91109242424221e-05, 0.00807945, 0.00807945, 
0.020928525, 0.012849075, 0.0220088833333333, 0.00108035833333334, 
0.00175163262820513, 7.43421282051321e-05, 0.0221138, 0.0221138, 
0.0102446, 0.0102446, 0.0120154, 0.0017708, 0.0200666666666667, 
0.00805126666666667, 0.00244068333333333, 0.000393549999999999, 
0.0237076833333333, 0.00120033333333333, 0.000241167080745348, 
0.000188334452540215, 0.0241580230263158, 0.000209172612237116, 
0.0242379, 7.98769736842057e-05, 0.0176797, 0.0176797, 0.0235249, 
0.0058452, 0.00078529145299145, 7.2291452991452e-05, 0.02382255, 
0.02382255, 0.000598958641975303, 0.000111317188983853, 0.0246851554216867, 
0.000263646779711441, 0.0249570488095238, 0.000271893387837067, 
0.0249671341176471, 1.00853081232422e-05, 0.02365215, 0.02365215, 
0.024353675, 0.000701524999999998, 0.000650124806201559, 3.66656885545033e-05, 
0.000456836281042327, 0.000379319696515407, 0.02383655, 0.02383655, 
0.0018273902892562, 0.000203304202012318, 0.0257591616803279, 
9.52213910716641e-05, 0.02460645, 0.02460645, 0.00118586295918368, 
3.31512788558121e-05, 0.0258034129554656, 1.10999962819047e-05, 
0.0216188, 0.0216188, 0.0228525, 0.0012337, 0.0225962, 0.0225962, 
0.000426666666666669, 0.000170366666666671, 0.02338853, 0.000365663333333328, 
0.0238588916666667, 0.000470361666666665, 0.0219154, 0.0219154, 
0.01886185, 0.01886185, 0.021912925, 0.003051075, 0.00172380833333333, 
0.00172133333333333, 0.00082082238095238, 0.00059866404761905, 
0.024803575, 0.000346019285714292, 0.0250001692307692, 0.000196594230769224, 
0.000967505639622477, 0.000164261914926123, 0.02279885, 0.02279885, 
0.02381695, 0.0010181, 0.0022695975826972, 0.000118872712305491, 
0.0192545, 0.0192545, 0.0068704433962264, 3.83958135292059e-05, 
0.0140484, 0.0140484, 0.0002986935, 0.0002986935, 0.01249955, 
0.0122008565, 0.00180384166666667, 0.000254991666666664, 0.01902536, 
0.00472196833333333, 0.00713787870162297, 3.82953053965629e-05, 
0.01826095, 0.01826095, 0.00799998186813187, 9.76931665089033e-05, 
0.02492055, 0.02492055, 0.0013590059090909, 1.86240409590296e-05, 
0.0266688001805054, 0.000389244271414516, 0.0267661508992806, 
9.73507187751535e-05, 0.02195675, 0.02195675, 0.022534175, 0.000577425, 
0.00426928497610514, 3.73090768245668e-05, 0.0116806, 0.0116806, 
0.022182175, 0.010501575, 0.0261952666666667, 0.00401309166666667, 
0.0194873, 0.0194873, 0.00691954375, 0.000211577083333334, 0.000640469902482271, 
0.000243853676377134, 0.02339415, 0.02339415, 0.026950775, 0.003556625, 
0.000300290682870373, 0.000203752030388103, 0.0276496450171821, 
0.000398579334311758, 0.0277259743150685, 7.63292978863614e-05, 
0.028663059556314, 0.00093708524124551, 0.0294093295918367, 0.000746270035522738, 
0.0308822547457627, 0.00147292515392598, 0.02601015, 0.02601015, 
0.00653031731418919, 0.00165821256842648, 0.0290623, 0.0290623, 
0.00454181610738254, 0.00106364879319335, 0.161237443892617, 
0.11444781), tip.label = c("INLUP00130", "INLUP00131", "INLUP00132", 
"INLUP00133", "INLUP00134", "INLUP00135", "INLUP00136", "INLUP00137", 
"INLUP00138", "INLUP00139", "INLUP00140", "INLUP00141", "INLUP00142", 
"INLUP00143", "INLUP00144", "INLUP00145", "INLUP00146", "INLUP00147", 
"INLUP00152", "INLUP00153", "INLUP00155", "INLUP00156", "INLUP00157", 
"INLUP00158", "INLUP00159", "INLUP00160", "INLUP00161", "INLUP00162", 
"INLUP00164", "INLUP00165", "INLUP00166", "INLUP00167", "INLUP00169", 
"INLUP00170", "INLUP00171", "INLUP00172", "INLUP00173", "INLUP00174", 
"INLUP00177", "INLUP00178", "INLUP00179", "INLUP00180", "INLUP00182", 
"INLUP00184", "INLUP00185", "INLUP00187", "INLUP00188", "INLUP00189", 
"INLUP00190", "INLUP00191", "INLUP00192", "INLUP00193", "INLUP00194", 
"INLUP00195", "INLUP00196", "INLUP00198", "INLUP00199", "INLUP00200", 
"INLUP00201", "INLUP00206", "INLUP00207", "INLUP00208", "INLUP00209", 
"INLUP00210", "INLUP00211", "INLUP00212", "INLUP00213", "INLUP00214", 
"INLUP00215", "INLUP00216", "INLUP00217", "INLUP00218", "INLUP00219", 
"INLUP00220", "INLUP00223", "INLUP00225", "INLUP00226", "INLUP00227", 
"INLUP00228", "INLUP00229", "INLUP00230", "INLUP00231", "INLUP00232", 
"INLUP00233", "INLUP00234", "INLUP00235", "INLUP00236", "INLUP00238", 
"INLUP00239", "INLUP00240", "INLUP00242", "INLUP00243", "INLUP00244", 
"INLUP00245", "INLUP00247", "INLUP00248", "INLUP00250", "INLUP00252", 
"INLUP00253", "INLUP00254", "INLUP00255", "INLUP00258", "INLUP00259", 
"INLUP00262", "INLUP00264", "INLUP00266", "INLUP00268", "INLUP00271", 
"INLUP00272", "INLUP00273", "INLUP00274", "INLUP00275", "INLUP00276", 
"INLUP00277", "INLUP00279", "INLUP00280", "INLUP00281", "INLUP00284", 
"INLUP00285", "INLUP00286", "INLUP00287", "INLUP00288", "INLUP00289", 
"INLUP00291", "INLUP00293", "INLUP00295", "INLUP00297", "INLUP00298", 
"INLUP00299", "INLUP00302", "INLUP00303", "INLUP00304", "INLUP00305", 
"INLUP00306", "INLUP00307", "INLUP00308", "INLUP00309", "INLUP00310", 
"INLUP00311", "INLUP00312", "INLUP00313", "INLUP00314", "INLUP00315", 
"INLUP00317", "INLUP00318", "INLUP00319", "INLUP00320", "INLUP00323", 
"INLUP00324", "INLUP00325", "INLUP00327", "INLUP00328", "INLUP00329", 
"INLUP00330", "INLUP00331", "INLUP00332", "INLUP00333", "INLUP00334", 
"INLUP00335", "INLUP00336", "INLUP00338", "INLUP00340", "INLUP00342", 
"INLUP00344", "INLUP00345", "INLUP00346", "INLUP00347", "INLUP00348", 
"INLUP00351", "INLUP00353", "INLUP00354", "INLUP00356", "INLUP00359", 
"INLUP00361", "INLUP00366", "INLUP00368", "INLUP00371", "INLUP00373", 
"INLUP00375", "INLUP00379", "INLUP00380", "INLUP00381", "INLUP00384", 
"INLUP00385", "INLUP00387", "INLUP00388", "INLUP00389", "INLUP00392", 
"INLUP00393", "INLUP00398", "INLUP00399", "INLUP00400", "INLUP00401", 
"INLUP00402", "INLUP00404", "INLUP00405", "INLUP00408", "INLUP00411", 
"INLUP00413", "INLUP00414", "INLUP00415", "INLUP00416", "INLUP00417", 
"INLUP00418", "INLUP00419", "INLUP00420", "INLUP00424", "INLUP00425", 
"INLUP00428", "INLUP00429", "INLUP00431", "INLUP00432", "INLUP00433", 
"INLUP00435", "INLUP00436", "INLUP00440", "INLUP00442", "INLUP00443", 
"INLUP00446", "INLUP00448", "INLUP00450", "INLUP00451", "INLUP00452", 
"INLUP00454", "INLUP00455", "INLUP00456", "INLUP00457", "INLUP00458", 
"INLUP00459", "INLUP00487", "INLUP00489", "INLUP00492", "INLUP00493", 
"INLUP00494", "INLUP00495", "INLUP00496", "INLUP00502", "INLUP00505", 
"INLUP00509", "INLUP00510", "INLUP00512", "INLUP00526", "INLUP00528", 
"INLUP00532", "INLUP00534", "INLUP00535", "INLUP00538", "INLUP00540", 
"INLUP00541", "INLUP00542", "INLUP00544", "INLUP00545", "INLUP00547", 
"INLUP00548", "INLUP00552", "INLUP00553", "INLUP00554", "INLUP00556", 
"INLUP00557", "INLUP00558", "INLUP00560", "INLUP00562", "INLUP00565", 
"INLUP00566", "INLUP00567", "INLUP00574", "INLUP00575", "INLUP00576", 
"INLUP00577", "INLUP00584", "INLUP00585", "INLUP00587", "INLUP00588", 
"INLUP00589", "INLUP00590", "INLUP00592", "INLUP00594", "INLUP00597", 
"INLUP00599", "INLUP00608", "INLUP00609", "INLUP00615", "INLUP00616", 
"INLUP00621", "INLUP00629", "INLUP00633", "INLUP00651", "INLUP00652", 
"INLUP00658", "INLUP00680", "INLUP00685", "INLUP00686", "INLUP00691", 
"INLUP00701", "INLUP00704", "INLUP00711", "INLUP00739", "INLUP00759", 
"INLUP00825", "INLUP00826", "SRR17658386", "SRR17658388", "SRR17658412", 
"SRR17658415"), Nnode = 303L), class = "phylo", order = "postorder")

Solution

  • As the discussion in the comments has brought to light, OP followed the tutorial too closely and, in doing so, overlooked that network (OP's data) is a single igraph object while got (from tutorial) is a list of seven igraph objects.

    > devtools::install_github('schochastics/networkdata')
    > library(networkdata)
    > class(got)
    [1] "list"
    > sapply(got, class)
    [1] "igraph" "igraph" "igraph" "igraph" "igraph" "igraph" "igraph"
    > # lapply(got, igraph::plot.igraph)
    > 
    > network = ape::as.igraph.phylo(phylo)
    > class(network)
    [1] "igraph"
    > # plot(network)
    

    i.e.

    # str(network)
    network[[2]] 
    

    returns a list-formatted piece of network

    $SRR17658386
    + 0/607 vertices, named, from e933f34:
    

    which cannot be plotted while

    > class(got[[2]])
    [1] "igraph"
    

    is an igraph object for which plotting methods exists. The tutorial's intro could have been more explicit.