carmclangsimdcortex-m

using SIMD on ARM cortex M4


ARM cortex M4 has SIMD instruction that allow summation of two 16bit wide numbers in parallel. On the ACLE, I can see there is a build C function to access the functionality in C called __sadd16 which should help me, but I cannot seem to see how what includes do I need and which flags do I need to add.

In fact, I'm not even sure the ACLE is the document I should look at, as it seemed to consider cortex A systems.

Lastly, I presume my solution should be compiler specific. I'm using clang, but cannot find relevant documentation for clang.


Solution

  • You’ll find those intrinsics defined in CMSIS_armclang.h (or your compiler’s equivalent), but you never include it directly. Instead, it’s pulled in by your MCU’s primary CMSIS header—for example, including the STM32F469’s device header (stm32f469xx.h) automatically brings in CMSIS_armclang.h (or the compiler-specific variant) so the intrinsics are ready to use.

    In fact, I'm not even sure the ACLE is the document I should look at, as it seemed to consider cortex A systems.

    Read cortex-m4 documentation instead. The document is called Cortex-M4 Technical Reference Manual.

    For more convenience use ARM CMSIS DSP extension library. https://arm-software.github.io/CMSIS_5/DSP/html/index.html

    here you have from CMSIS:

    
    #define __INLINE inline
    #define __ASM            __asm
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
    {
      uint32_t result;
      
      __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
      return(result);
    }
    
    #define __SSAT16(ARG1,ARG2) \
    ({                          \
      uint32_t __RES, __ARG1 = (ARG1); \
      __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
      __RES; \
     })
      
    #define __USAT16(ARG1,ARG2) \
    ({                          \
      uint32_t __RES, __ARG1 = (ARG1); \
      __ASM ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
      __RES; \
     })
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UXTB16(uint32_t op1)
    {
      uint32_t result;
      
      __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SXTB16(uint32_t op1)
    {
      uint32_t result;
      
      __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
    {
      uint32_t result;
      
      __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
    {
      uint32_t result;
      
      __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
      return(result);
    }
    
    #define __SMLALD(ARG1,ARG2,ARG3) \
    ({ \
      uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((uint64_t)(ARG3) >> 32), __ARG3_L = (uint32_t)((uint64_t)(ARG3) & 0xFFFFFFFFUL); \
      __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
      (uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
     })
    
    #define __SMLALDX(ARG1,ARG2,ARG3) \
    ({ \
      uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((uint64_t)(ARG3) >> 32), __ARG3_L = (uint32_t)((uint64_t)(ARG3) & 0xFFFFFFFFUL); \
      __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
      (uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
     })
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
    {
      uint32_t result;
      
      __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
    {
      uint32_t result;
      
      __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
      return(result);
    }
    
    #define __SMLSLD(ARG1,ARG2,ARG3) \
    ({ \
      uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((ARG3) >> 32), __ARG3_L = (uint32_t)((ARG3) & 0xFFFFFFFFUL); \
      __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
      (uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
     })
    
    #define __SMLSLDX(ARG1,ARG2,ARG3) \
    ({ \
      uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((ARG3) >> 32), __ARG3_L = (uint32_t)((ARG3) & 0xFFFFFFFFUL); \
      __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
      (uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
     })
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __QADD(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
    
      __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    __attribute__( ( always_inline ) ) static __INLINE uint32_t __QSUB(uint32_t op1, uint32_t op2)
    {
      uint32_t result;
      
      __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
      return(result);
    }
    
    #define __PKHBT(ARG1,ARG2,ARG3) \
    ({                          \
      uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
      __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
      __RES; \
     })
    
    #define __PKHTB(ARG1,ARG2,ARG3) \
    ({                          \
      uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
      if (ARG3 == 0) \
        __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2)  ); \
      else  \
        __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
      __RES; \
     })