prologpath-findingconstraint-programmingclpfdsicstus-prolog

Optimizing pathfinding in Constraint Logic Programming with Prolog


I am working on a small prolog application to solve the Skyscrapers and Fences puzzle.

An unsolved puzzle:

Skyscrapers in fences puzzle (unsolved)

A solved puzzle:

Skyscrapers in fences puzzle (solved)

When I pass the program already solved puzzles it is quick, almost instantaneous, to validate it for me. When I pass the program really small puzzles (2x2, for example, with modified rules, of course), it is also quite fast to find a solution.

The problem is on computing puzzles with the "native" size of 6x6. I've left it running for 5 or so hours before aborting it. Way too much time.

I've found that the part that takes the longest is the "fences" one, not the "skyscrapers". Running "skyscrapers" separately results in a fast solution.

Here's my algorithm for fences:

What can I do to increase efficiency? Code is included below for reference.

skyscrapersinfences.pro

:-use_module(library(clpfd)).
:-use_module(library(lists)).

:-ensure_loaded('utils.pro').
:-ensure_loaded('s1.pro').

print_row([]).

print_row([Head|Tail]) :-
    write(Head), write(' '),
    print_row(Tail).

print_board(Board, BoardWidth) :-
    print_board(Board, BoardWidth, 0).

print_board(_, BoardWidth, BoardWidth).

print_board(Board, BoardWidth, Index) :-
    make_segment(Board, BoardWidth, Index, row, Row),
    print_row(Row), nl,
    NewIndex is Index + 1,
    print_board(Board, BoardWidth, NewIndex).

print_boards([], _).
print_boards([Head|Tail], BoardWidth) :-
    print_board(Head, BoardWidth), nl,
    print_boards(Tail, BoardWidth).

get_board_element(Board, BoardWidth, X, Y, Element) :-
    Index is BoardWidth*Y + X,
    get_element_at(Board, Index, Element).

make_column([], _, _, []).

make_column(Board, BoardWidth, Index, Segment) :-
    get_element_at(Board, Index, Element),
    munch(Board, BoardWidth, MunchedBoard),
    make_column(MunchedBoard, BoardWidth, Index, ColumnTail),
    append([Element], ColumnTail, Segment).

make_segment(Board, BoardWidth, Index, row, Segment) :-
    NIrrelevantElements is BoardWidth*Index,
    munch(Board, NIrrelevantElements, MunchedBoard),
    select_n_elements(MunchedBoard, BoardWidth, Segment).

make_segment(Board, BoardWidth, Index, column, Segment) :-
    make_column(Board, BoardWidth, Index, Segment).

verify_segment(_, 0).
verify_segment(Segment, Value) :-
    verify_segment(Segment, Value, 0).

verify_segment([], 0, _).
verify_segment([Head|Tail], Value, Max) :-
    Head #> Max #<=> B, 
    Value #= M+B,
    maximum(NewMax, [Head, Max]),
    verify_segment(Tail, M, NewMax).

exactly(_, [], 0).
exactly(X, [Y|L], N) :-
    X #= Y #<=> B,
    N #= M  +B,
    exactly(X, L, M).

constrain_numbers(Vars) :-
    exactly(3, Vars, 1),
    exactly(2, Vars, 1),
    exactly(1, Vars, 1).

iteration_values(BoardWidth, Index, row, 0, column) :-
    Index is BoardWidth - 1.

iteration_values(BoardWidth, Index, Type, NewIndex, Type) :-
    \+((Type = row, Index is BoardWidth - 1)),
    NewIndex is Index + 1.

solve_skyscrapers(Board, BoardWidth) :-
    solve_skyscrapers(Board, BoardWidth, 0, row).

solve_skyscrapers(_, BoardWidth, BoardWidth, column).

solve_skyscrapers(Board, BoardWidth, Index, Type) :-
    make_segment(Board, BoardWidth, Index, Type, Segment),

    domain(Segment, 0, 3),
    constrain_numbers(Segment),

    observer(Type, Index, forward, ForwardObserver),
    verify_segment(Segment, ForwardObserver),

    observer(Type, Index, reverse, ReverseObserver),
    reverse(Segment, ReversedSegment),
    verify_segment(ReversedSegment, ReverseObserver),

    iteration_values(BoardWidth, Index, Type, NewIndex, NewType),
    solve_skyscrapers(Board, BoardWidth, NewIndex, NewType).

build_vertex_list(_, Vertices, BoardWidth, X, Y, List) :-
    V1X is X, V1Y is Y, V1Index is V1X + V1Y*(BoardWidth+1),
    V2X is X+1, V2Y is Y, V2Index is V2X + V2Y*(BoardWidth+1),
    V3X is X+1, V3Y is Y+1, V3Index is V3X + V3Y*(BoardWidth+1),
    V4X is X, V4Y is Y+1, V4Index is V4X + V4Y*(BoardWidth+1),
    get_element_at(Vertices, V1Index, V1),
    get_element_at(Vertices, V2Index, V2),
    get_element_at(Vertices, V3Index, V3),
    get_element_at(Vertices, V4Index, V4),
    List = [V1, V2, V3, V4].

build_neighbors_list(Vertices, VertexWidth, X, Y, [NorthMask, EastMask, SouthMask, WestMask], [NorthNeighbor, EastNeighbor, SouthNeighbor, WestNeighbor]) :-
    NorthY is Y - 1,
    EastX is X + 1,
    SouthY is Y + 1,
    WestX is X - 1,
    NorthNeighborIndex is (NorthY)*VertexWidth + X,
    EastNeighborIndex is Y*VertexWidth + EastX,
    SouthNeighborIndex is (SouthY)*VertexWidth + X,
    WestNeighborIndex is Y*VertexWidth + WestX,
    (NorthY >= 0, get_element_at(Vertices, NorthNeighborIndex, NorthNeighbor) -> NorthMask = 1 ; NorthMask = 0),
    (EastX < VertexWidth, get_element_at(Vertices, EastNeighborIndex, EastNeighbor) -> EastMask = 1 ; EastMask = 0),
    (SouthY < VertexWidth, get_element_at(Vertices, SouthNeighborIndex, SouthNeighbor) -> SouthMask = 1 ; SouthMask = 0),
    (WestX >= 0, get_element_at(Vertices, WestNeighborIndex, WestNeighbor) -> WestMask = 1 ; WestMask = 0).

solve_path(_, VertexWidth, 0, VertexWidth) :-
    write('end'),nl.

solve_path(Vertices, VertexWidth, VertexWidth, Y) :-
    write('switch row'),nl,
    Y \= VertexWidth,
    NewY is Y + 1,
    solve_path(Vertices, VertexWidth, 0, NewY).

solve_path(Vertices, VertexWidth, X, Y) :-
    X >= 0, X < VertexWidth, Y >= 0, Y < VertexWidth,
    write('Path: '), nl,
    write('Vertex width: '), write(VertexWidth), nl,
    write('X: '), write(X), write(' Y: '), write(Y), nl,
    VertexIndex is X + Y*VertexWidth,
    write('1'),nl,
    get_element_at(Vertices, VertexIndex, Vertex),
    write('2'),nl,
    build_neighbors_list(Vertices, VertexWidth, X, Y, [NorthMask, EastMask, SouthMask, WestMask], [NorthNeighbor, EastNeighbor, SouthNeighbor, WestNeighbor]),
    L1 = [NorthMask, EastMask, SouthMask, WestMask],
    L2 = [NorthNeighbor, EastNeighbor, SouthNeighbor, WestNeighbor],
    write(L1),nl,
    write(L2),nl,
    write('3'),nl,
    maximum(Max, Vertices),
    write('4'),nl,
    write('Max: '), write(Max),nl,
    write('Vertex: '), write(Vertex),nl,
    (Vertex #> 1 #/\ Vertex #\= Max) #=> (
                        ((NorthMask #> 0 #/\ NorthNeighbor #> 0) #/\ (NorthNeighbor #= Vertex - 1)) #\
                        ((EastMask #> 0 #/\ EastNeighbor #> 0) #/\ (EastNeighbor #= Vertex - 1)) #\
                        ((SouthMask #> 0 #/\ SouthNeighbor #> 0) #/\ (SouthNeighbor #= Vertex - 1)) #\
                        ((WestMask #> 0 #/\ WestNeighbor #> 0) #/\ (WestNeighbor #= Vertex - 1))
                    ) #/\ (
                        ((NorthMask #> 0 #/\ NorthNeighbor #> 0) #/\ (NorthNeighbor #= Vertex + 1)) #\
                        ((EastMask #> 0 #/\ EastNeighbor #> 0) #/\ (EastNeighbor #= Vertex + 1)) #\
                        ((SouthMask #> 0 #/\ SouthNeighbor #> 0) #/\ (SouthNeighbor #= Vertex + 1)) #\
                        ((WestMask #> 0 #/\ WestNeighbor #> 0) #/\ (WestNeighbor #= Vertex + 1))
                    ),
    write('5'),nl,
    Vertex #= 1 #=> (
                        ((NorthMask #> 0 #/\ NorthNeighbor #> 0) #/\ (NorthNeighbor #= Max)) #\
                        ((EastMask #> 0 #/\ EastNeighbor #> 0) #/\ (EastNeighbor #= Max)) #\
                        ((SouthMask #> 0 #/\ SouthNeighbor #> 0) #/\ (SouthNeighbor #= Max)) #\
                        ((WestMask #> 0 #/\ WestNeighbor #> 0) #/\ (WestNeighbor #= Max))
                    ) #/\ (
                        ((NorthMask #> 0 #/\ NorthNeighbor #> 0) #/\ (NorthNeighbor #= 2)) #\
                        ((EastMask #> 0 #/\ EastNeighbor #> 0) #/\ (EastNeighbor #= 2)) #\
                        ((SouthMask #> 0 #/\ SouthNeighbor #> 0) #/\ (SouthNeighbor #= 2)) #\
                        ((WestMask #> 0 #/\ WestNeighbor #> 0) #/\ (WestNeighbor #= 2))
                    ),

    write('6'),nl,
    Vertex #= Max #=> (
                        ((NorthMask #> 0 #/\ NorthNeighbor #> 0) #/\ (NorthNeighbor #= 1)) #\
                        ((EastMask #> 0 #/\ EastNeighbor #> 0) #/\ (EastNeighbor #= 1)) #\
                        ((SouthMask #> 0 #/\ SouthNeighbor #> 0) #/\ (SouthNeighbor #= 1)) #\
                        ((WestMask #> 0 #/\ WestNeighbor #> 0) #/\ (WestNeighbor #= 1))
                    ) #/\ (
                        ((NorthMask #> 0 #/\ NorthNeighbor #> 0) #/\ (NorthNeighbor #= Max - 1)) #\
                        ((EastMask #> 0 #/\ EastNeighbor #> 0) #/\ (EastNeighbor #= Max - 1)) #\
                        ((SouthMask #> 0 #/\ SouthNeighbor   #> 0) #/\ (SouthNeighbor #= Max - 1)) #\
                        ((WestMask #> 0 #/\ WestNeighbor #> 0) #/\ (WestNeighbor #= Max - 1))
                    ),

    write('7'),nl,
    NewX is X + 1,
    solve_path(Vertices, VertexWidth, NewX, Y).

solve_fences(Board, Vertices, BoardWidth) :-
    VertexWidth is BoardWidth + 1,
    write('- Solving vertices'),nl,
    solve_vertices(Board, Vertices, BoardWidth, 0, 0),
    write('- Solving path'),nl,
    solve_path(Vertices, VertexWidth, 0, 0).

solve_vertices(_, _, BoardWidth, 0, BoardWidth).

solve_vertices(Board, Vertices, BoardWidth, BoardWidth, Y) :-
    Y \= BoardWidth,
    NewY is Y + 1,
    solve_vertices(Board, Vertices, BoardWidth, 0, NewY).

solve_vertices(Board, Vertices, BoardWidth, X, Y) :-
    X >= 0, X < BoardWidth, Y >= 0, Y < BoardWidth,
    write('process'),nl,
    write('X: '), write(X), write(' Y: '), write(Y), nl,
    build_vertex_list(Board, Vertices, BoardWidth, X, Y, [V1, V2, V3, V4]),
    write('1'),nl,
    get_board_element(Board, BoardWidth, X, Y, Element),
    write('2'),nl,
    maximum(Max, Vertices),
    (V1 #> 0 #/\ V2 #> 0 #/\ 
        (
            (V1 + 1 #= V2) #\ 
            (V1 - 1 #= V2) #\ 
            (V1 #= Max #/\ V2 #= 1) #\
            (V1 #= 1 #/\ V2 #= Max) 
        ) 
    ) #<=> B1,
    (V2 #> 0 #/\ V3 #> 0 #/\ 
        (
            (V2 + 1 #= V3) #\ 
            (V2 - 1 #= V3) #\ 
            (V2 #= Max #/\ V3 #= 1) #\
            (V2 #= 1 #/\ V3 #= Max) 
        ) 
    ) #<=> B2,
    (V3 #> 0 #/\ V4 #> 0 #/\ 
        (
            (V3 + 1 #= V4) #\ 
            (V3 - 1 #= V4) #\ 
            (V3 #= Max #/\ V4 #= 1) #\
            (V3 #= 1 #/\ V4 #= Max) 
        ) 
    ) #<=> B3,
    (V4 #> 0 #/\ V1 #> 0 #/\ 
        (
            (V4 + 1 #= V1) #\ 
            (V4 - 1 #= V1) #\ 
            (V4 #= Max #/\ V1 #= 1) #\
            (V4 #= 1 #/\ V1 #= Max) 
        ) 
    ) #<=> B4,
    write('3'),nl,
    sum([B1, B2, B3, B4], #= , C),
    write('4'),nl,
    Element #> 0 #=> C #= Element,
    write('5'),nl,
    NewX is X + 1,
    solve_vertices(Board, Vertices, BoardWidth, NewX, Y).

sel_next_variable_for_path(Vars,Sel,Rest) :-
    % write(Vars), nl,
    findall(Idx-Cost, (nth1(Idx, Vars,V), fd_set(V,S), fdset_size(S,Size), fdset_min(S,Min),  var_cost(Min,Size, Cost)), L), 
    min_member(comp, BestIdx-_MinCost, L),
    nth1(BestIdx, Vars, Sel, Rest),!.

var_cost(0, _, 1000000) :- !.
var_cost(_, 1, 1000000) :- !.
var_cost(X, _, X).

%build_vertex_list(_, Vertices, BoardWidth, X, Y, List)

constrain_starting_and_ending_vertices(Vertices, [V1,V2,V3,V4]) :-
    maximum(Max, Vertices),
    (V1 #= 1 #/\        V2 #= Max #/\       V3 #= Max - 1 #/\   V4 #= 2         ) #\
    (V1 #= Max #/\      V2 #= 1 #/\         V3 #= 2 #/\         V4 #= Max - 1   ) #\
    (V1 #= Max - 1 #/\  V2 #= Max #/\       V3 #= 1 #/\         V4 #= 2         ) #\
    (V1 #= 2 #/\        V2 #= 1 #/\         V3 #= Max #/\       V4 #= Max - 1   ) #\
    (V1 #= 1 #/\        V2 #= 2 #/\         V3 #= Max - 1 #/\   V4 #= Max       ) #\
    (V1 #= Max #/\      V2 #= Max - 1 #/\   V3 #= 2 #/\         V4 #= 1         ) #\
    (V1 #= Max - 1 #/\  V2 #= 2 #/\         V3 #= 1 #/\         V4 #= Max       ) #\
    (V1 #= 2 #/\        V2 #= Max - 1 #/\   V3 #= Max #/\       V4 #= 1         ).

set_starting_and_ending_vertices(Board, Vertices, BoardWidth) :-
    set_starting_and_ending_vertices(Board, Vertices, BoardWidth, 0, 0).

set_starting_and_ending_vertices(Board, Vertices, BoardWidth, BoardWidth, Y) :-
    Y \= BoardWidth,
    NewY is Y + 1,
    solve_path(Board, Vertices, BoardWidth, 0, NewY).

set_starting_and_ending_vertices(Board, Vertices, BoardWidth, X, Y) :-
    X >= 0, X < BoardWidth, Y >= 0, Y < BoardWidth,
    build_vertex_list(_, Vertices, BoardWidth, X, Y, List),
    get_board_element(Board, BoardWidth, X, Y, Element),
    (Element = 3 -> 
        constrain_starting_and_ending_vertices(Vertices, List) 
        ; 
            NewX is X + 1,
        set_starting_and_ending_vertices(Board, Vertices, BoardWidth, NewX, Y)).

solve(Board, Vertices, BoardWidth) :-
    write('Skyscrapers'), nl,
    solve_skyscrapers(Board, BoardWidth),
    write('Labeling'), nl,
    labeling([ff], Board), !, 
    write('Setting domain'), nl,
    NVertices is (BoardWidth+1)*(BoardWidth+1),
    domain(Vertices, 0, NVertices),
    write('Starting and ending vertices'), nl,
    set_starting_and_ending_vertices(Board, Vertices, BoardWidth),
    write('Setting maximum'), nl,
    maximum(Max, Vertices),
    write('1'),nl,
    Max #> BoardWidth + 1,
    write('2'),nl,
    Max #< NVertices,
    count(0, Vertices, #=, NZeros),
    Max #= NVertices - NZeros,
    write('3'),nl,
    write('Calling nvalue'), nl,
    ValueCount #= Max + 1,
    nvalue(ValueCount, Vertices),
    write('Solving fences'), nl,
    solve_fences(Board, Vertices, BoardWidth),
    write('Labeling'), nl,
    labeling([ff], Vertices).

main :-
    board(Board),
    board_width(BoardWidth),
    vertices(Vertices),

    solve(Board, Vertices, BoardWidth),

    %findall(Board,
    %   labeling([ff], Board),
    %   Boards
    %),

    %append(Board, Vertices, Final),

    write('done.'),nl,
    print_board(Board, 6), nl,
    print_board(Vertices, 7).

utils.pro

get_element_at([Head|_], 0, Head).

get_element_at([_|Tail], Index, Element) :-
  Index \= 0,
  NewIndex is Index - 1,
  get_element_at(Tail, NewIndex, Element).

reverse([], []).

reverse([Head|Tail], Inv) :-
  reverse(Tail, Aux),
  append(Aux, [Head], Inv).

munch(List, 0, List).

munch([_|Tail], Count, FinalList) :-
    Count > 0,
    NewCount is Count - 1,
    munch(Tail, NewCount, FinalList).

select_n_elements(_, 0, []).

select_n_elements([Head|Tail], Count, FinalList) :-
    Count > 0,
    NewCount is Count - 1,
    select_n_elements(Tail, NewCount, Result),
    append([Head], Result, FinalList).

generate_list(Element, NElements, [Element|Result]) :-
  NElements > 0,
  NewNElements is NElements - 1,
  generate_list(Element, NewNElements, Result).

generate_list(_, 0, []).

s1.pro

% Skyscrapers and Fences puzzle S1

board_width(6).

%observer(Type, Index, Orientation, Observer),
observer(row, 0, forward, 2).
observer(row, 1, forward, 2).
observer(row, 2, forward, 2).
observer(row, 3, forward, 1).
observer(row, 4, forward, 2).
observer(row, 5, forward, 1).

observer(row, 0, reverse, 1).
observer(row, 1, reverse, 1).
observer(row, 2, reverse, 2).
observer(row, 3, reverse, 3).
observer(row, 4, reverse, 2).
observer(row, 5, reverse, 2).

observer(column, 0, forward, 2).
observer(column, 1, forward, 3).
observer(column, 2, forward, 0).
observer(column, 3, forward, 2).
observer(column, 4, forward, 2).
observer(column, 5, forward, 1).

observer(column, 0, reverse, 1).
observer(column, 1, reverse, 1).
observer(column, 2, reverse, 2).
observer(column, 3, reverse, 2).
observer(column, 4, reverse, 2).
observer(column, 5, reverse, 2).

board(
    [
        _, _, 2, _, _, _,
        _, _, _, _, _, _,
        _, 2, _, _, _, _,
        _, _, _, 2, _, _,
        _, _, _, _, _, _,
        _, _, _, _, _, _
    ]
).

vertices(
    [
        _, _, _, _, _, _, _,
        _, _, _, _, _, _, _,
        _, _, _, _, _, _, _,
        _, _, _, _, _, _, _,
        _, _, _, _, _, _, _,
        _, _, _, _, _, _, _,
        _, _, _, _, _, _, _
    ]
).

Solution

  • I also, like twinterer, enjoyed this puzzle. But being a principiant, I had first to discover an appropriate strategy, for both skyscrapes and fences part, and then deeply debugging the latter, cause a copy variables problem that locked me many hours.

    Once solved the bug, I faced the inefficiency of my first attempt. I reworked in plain Prolog a similar schema, just to verify how inefficient it was.

    At least, I understood how use CLP(FD) more effectively to model the problem (with help from the twinterer' answer), and now the program is fast (0,2 sec). So now I can hint you about your code: the required constraints are far simpler than those you coded: for the fences part, i.e. with a buildings placement fixed, we have 2 constraints: number of edges where height > 0, and linking the edges together: when an edge is used, the sum of adjacents must be 1 (on both sides).

    Here is the last version of my code, developed with SWI-Prolog.

    /*  File:    skys.pl
        Author:  Carlo,,,
        Created: Dec 11 2011
        Purpose: questions/8458945 on http://stackoverflow.com
            http://stackoverflow.com/questions/8458945/optimizing-pathfinding-in-constraint-logic-programming-with-prolog
    */
    
    :- module(skys, [skys/0, fences/2, draw_path/2]).
    :- [index_square,
        lambda,
        library(clpfd),
        library(aggregate)].
    
    puzzle(1,
      [[-,2,3,-,2,2,1,-],
       [2,-,-,2,-,-,-,1],
       [2,-,-,-,-,-,-,1],
       [2,-,2,-,-,-,-,2],
       [1,-,-,-,2,-,-,3],
       [2,-,-,-,-,-,-,2],
       [1,-,-,-,-,-,-,2],
       [-,1,1,2,2,2,2,-]]).
    
    skys :-
        puzzle(1, P),
        skyscrapes(P, Rows),
    
        flatten(Rows, Flat),
        label(Flat),
    
        maplist(writeln, Rows),
    
        fences(Rows, Loop),
    
        writeln(Loop),
        draw_path(7, Loop).
    
    %%  %%%%%%%%%%
    %   skyscrapes part
    %   %%%%%%%%%%
    
    skyscrapes(Puzzle, Rows) :-
    
        % massaging definition: separe external 'visibility' counters
        first_and_last(Puzzle, Fpt, Lpt, Wpt),
        first_and_last(Fpt, -, -, Fp),
        first_and_last(Lpt, -, -, Lp),
        maplist(first_and_last, Wpt, Lc, Rc, InnerData),
    
        % InnerData it's the actual 'playground', Fp, Lp, Lc, Rc are list of counters
        maplist(make_vars, InnerData, Rows),
    
        % exploit symmetry wrt rows/cols
        transpose(Rows, Cols),
    
        % each row or col contains once 1,2,3
        Occurs = [0-_, 1-1, 2-1, 3-1],  % allows any grid size leaving unspecified 0s
        maplist(\Vs^global_cardinality(Vs, Occurs), Rows),
        maplist(\Vs^global_cardinality(Vs, Occurs), Cols),
    
        % apply 'external visibility' constraint
        constraint_views(Lc, Rows),
        constraint_views(Fp, Cols),
    
        maplist(reverse, Rows, RRows),
        constraint_views(Rc, RRows),
    
        maplist(reverse, Cols, RCols),
        constraint_views(Lp, RCols).
    
    first_and_last(List, First, Last, Without) :-
        append([[First], Without, [Last]], List).
    
    make_vars(Data, Vars) :-
        maplist(\C^V^(C \= (-) -> V #= C ; V in 0..3), Data, Vars).
    
    constraint_views(Ns, Ls) :-
        maplist(\N^L^
        (   N \= (-)
        ->  constraint_view(0, L, Rs),
            sum(Rs, #=, N)
        ;   true
        ), Ns, Ls).
    
    constraint_view(_, [], []).
    constraint_view(Top, [V|Vs], [R|Rs]) :-
        R #<==> V #> 0 #/\ V #> Top,
        Max #= max(Top, V),
        constraint_view(Max, Vs, Rs).
    
    %%  %%%%%%%%%%%%%%%
    %   fences part
    %   %%%%%%%%%%%%%%%
    
    fences(SkyS, Ps) :-
    
        length(SkyS, D),
    
        % allocate edges
        max_dimensions(D, _,_,_,_, N),
        N1 is N + 1,
        length(Edges, N1),
        Edges ins 0..1,
    
        findall((R, C, V),
            (nth0(R, SkyS, Row), nth0(C, Row, V), V > 0),
            Buildings),
        maplist(count_edges(D, Edges), Buildings),
    
        findall((I, Adj1, Adj2),
            (between(0, N, I), edge_adjacents(D, I, Adj1, Adj2)),
            Path),
        maplist(make_path(Edges), Path, Vs),
    
        flatten([Edges, Vs], Gs),
        label(Gs),
    
        used_edges_to_path_coords(D, Edges, Ps).
    
    count_edges(D, Edges, (R, C, V)) :-
        cell_edges(D, (R, C), Is),
        idxs0_to_elems(Is, Edges, Es),
        sum(Es, #=, V).
    
    make_path(Edges, (Index, G1, G2), [S1, S2]) :-
    
        idxs0_to_elems(G1, Edges, Adj1),
        idxs0_to_elems(G2, Edges, Adj2),
        nth0(Index, Edges, Edge),
    
        [S1, S2] ins 0..3,
        sum(Adj1, #=, S1),
        sum(Adj2, #=, S2),
        Edge #= 1 #<==> S1 #= 1 #/\ S2 #= 1.
    
    %%  %%%%%%%%%%%%%%
    %   utility: draw a path with arrows
    %   %%%%%%%%%%%%%%
    
    draw_path(D, P) :-
        forall(between(1, D, R),
               (   forall(between(1, D, C),
                  (   V is (R - 1) * D + C - 1,
                      U is (R - 2) * D + C - 1,
                      (   append(_, [V, U|_], P)
                      ->  write(' ^   ')
                      ;   append(_, [U, V|_], P)
                      ->  write(' v   ')
                      ;   write('     ')
                      )
                  )),
               nl,
               forall(between(1, D, C),
                  (   V is (R - 1) * D + C - 1,
                      (   V < 10
                      ->  write(' ') ; true
                      ),
                      write(V),
                      U is V + 1,
                      (   append(_, [V, U|_], P)
                      ->  write(' > ')
                      ;   append(_, [U, V|_], P)
                      ->  write(' < ')
                      ;   write('   ')
                      )
                  )),
                 nl
            )
               ).
    
    % convert from 'edge used flags' to vertex indexes
    %
    used_edges_to_path_coords(D, EdgeUsedFlags, PathCoords) :-
        findall((X, Y),
            (nth0(Used, EdgeUsedFlags, 1), edge_verts(D, Used, X, Y)),
            Path),
        Path = [(First, _)|_],
        edge_follower(First, Path, PathCoords).
    
    edge_follower(C, Path, [C|Rest]) :-
        (   select(E, Path, Path1),
            ( E = (C, D) ; E = (D, C) )
        ->  edge_follower(D, Path1, Rest)
        ;   Rest = []
        ).
    

    The output:

    [0,0,2,1,0,3]
    [2,1,3,0,0,0]
    [0,2,0,3,1,0]
    [0,3,0,2,0,1]
    [1,0,0,0,3,2]
    [3,0,1,0,2,0]
    
    [1,2,3,4,5,6,13,12,19,20,27,34,41,48,47,40,33,32,39,46,45,38,31,24,25,18,17,10,9,16,23,
    22,29,30,37,36,43,42,35,28,21,14,7,8,1]
    
     0    1 >  2 >  3 >  4 >  5 >  6   
          ^                        v   
     7 >  8    9 < 10   11   12 < 13   
     ^         v    ^         v        
    14   15   16   17 < 18   19 > 20   
     ^         v         ^         v   
    21   22 < 23   24 > 25   26   27   
     ^    v         ^              v   
    28   29 > 30   31   32 < 33   34   
     ^         v    ^    v    ^    v   
    35   36 < 37   38   39   40   41   
     ^    v         ^    v    ^    v   
    42 < 43   44   45 < 46   47 < 48   
    

    As I mentioned, my first attempt was more 'procedural': it draws a loop, but the problem I was unable to solve is basically that the cardinality of vertices subset must be known before, being based on the global constraint all_different. It painfully works on a reduced 4*4 puzzle, but I stopped it after some hours on the 6*6 original. Anyway, learning from scratch how to draw a path with CLP(FD) has been rewarding.

    t :-
        time(fences([[0,0,2,1,0,3],
                 [2,1,3,0,0,0],
                 [0,2,0,3,1,0],
                 [0,3,0,2,0,1],
                 [1,0,0,0,3,2],
                 [3,0,1,0,2,0]
                ],L)),
        writeln(L).
    
    fences(SkyS, Ps) :-
    
        length(SkyS, Dt),
            D is Dt + 1,
        Sq is D * D - 1,
    
        % min/max num. of vertices
        aggregate_all(sum(V), (member(R, SkyS), member(V, R)), MinVertsT),
        MinVerts is max(4, MinVertsT),
        MaxVerts is D * D,
    
        % find first cell with heigth 3, for sure start vertex
        nth0(R, SkyS, Row), nth0(C, Row, 3),
    
        % search a path with at least MinVerts
        between(MinVerts, MaxVerts, NVerts),
        length(Vs, NVerts),
    
        Vs ins 0 .. Sq,
        all_distinct(Vs),
    
        % make a loop
        Vs = [O|_],
        O is R * D + C,
        append(Vs, [O], Ps),
    
        % apply #edges check
        findall(rc(Ri, Ci, V),
            (nth0(Ri, SkyS, Rowi),
             nth0(Ci, Rowi, V),
             V > 0), VRCs),
        maplist(count_edges(Ps, D), VRCs),
    
        connect_path(D, Ps),
        label(Vs).
    
    count_edges(Ps, D, rc(R, C, V)) :-
        V0 is R * D + C,
        V1 is R * D + C + 1,
        V2 is (R + 1) * D + C,
        V3 is (R + 1) * D + C + 1,
        place_edges(Ps, [V0-V1, V0-V2, V1-V3, V2-V3], Ts),
        flatten(Ts, Tsf),
        sum(Tsf, #=, V).
    
    place_edges([A,B|Ps], L, [R|Rs]) :-
        place_edge(L, A-B, R),
        place_edges([B|Ps], L, Rs).
    place_edges([_], _L, []).
    
    place_edge([M-N | L], A-B, [Y|R]) :-
        Y #<==> (A #= M #/\ B #= N) #\/ (A #= N #/\ B #= M),
        place_edge(L, A-B, R).
    place_edge([], _, []).
    
    connect(X, D, Y) :-
        D1 is D - 1,
        [R, C] ins 0 .. D1,
    
        X #= R * D + C,
        ( C #< D - 1, Y #= R * D + C + 1
        ; R #< D - 1, Y #= (R + 1) * D + C
        ; C #> 0, Y #= R * D + C - 1
        ; R #> 0, Y #= (R - 1) * D + C
        ).
    
    connect_path(D, [X, Y | R]) :-
        connect(X, D, Y),
        connect_path(D, [Y | R]).
    connect_path(_, [_]).
    

    Thanks you for such interesting question.

    MORE EDIT:here the main miss piece of code for the complete solution (index_square.pl)

    /*  File:    index_square.pl
        Author:  Carlo,,,
        Created: Dec 15 2011
        Purpose: indexing square grid for FD mapping
    */
    
    :- module(index_square,
          [max_dimensions/6,
           idxs0_to_elems/3,
           edge_verts/4,
           edge_is_horiz/3,
           cell_verts/3,
           cell_edges/3,
           edge_adjacents/4,
           edge_verts_all/2
          ]).
    
    %
    % index row  : {D}, left to right
    % index col  : {D}, top to bottom
    % index cell : same as top edge or row,col
    % index vert : {(D + 1) * 2}
    % index edge : {(D * (D + 1)) * 2}, first all horiz, then vert
    %
    % {N} denote range 0 .. N-1
    %
    %  on a 2*2 grid, the numbering schema is
    %
    %       0   1
    %   0-- 0 --1-- 1 --2
    %   |       |       |
    % 0 6  0,0  7  0,1  8
    %   |       |       |
    %   3-- 2 --4-- 3 --5
    %   |       |       |
    % 1 9  1,0  10 1,1  11
    %   |       |       |
    %   6-- 4 --7-- 5 --8
    %
    %  while on a 4*4 grid:
    %
    %       0   1       2       3
    %   0-- 0 --1-- 1 --2-- 2 --3-- 3 --4
    %   |       |       |       |       |
    % 0 20      21      22      23      24
    %   |       |       |       |       |
    %   5-- 4 --6-- 5 --7-- 6 --8-- 7 --9
    %   |       |       |       |       |
    % 1 25      26      27      28      29
    %   |       |       |       |       |
    %   10--8 --11- 9 --12--10--13--11--14
    %   |       |       |       |       |
    % 2 30      31      32      33      34
    %   |       |       |       |       |
    %   15--12--16--13--17--14--18--15--19
    %   |       |       |       |       |
    % 3 35      36      37      38      39
    %   |       |       |       |       |
    %   20--16--21--17--22--18--23--19--24
    %
    %   |       |
    % --+-- N --+--
    %   |       |
    %   W  R,C  E
    %   |       |
    % --+-- S --+--
    %   |       |
    %
    
    % get range upper value for interesting quantities
    %
    max_dimensions(D, MaxRow, MaxCol, MaxCell, MaxVert, MaxEdge) :-
        MaxRow is D - 1,
        MaxCol is D - 1,
        MaxCell is D * D - 1,
        MaxVert is ((D + 1) * 2) - 1,
        MaxEdge is (D * (D + 1) * 2) - 1.
    
    % map indexes to elements
    %
    idxs0_to_elems(Is, Edges, Es) :-
        maplist(nth0_(Edges), Is, Es).
    nth0_(Edges, I, E) :-
        nth0(I, Edges, E).
    
    % get vertices of edge
    %
    edge_verts(D, E, X, Y) :-
        S is D + 1,
        edge_is_horiz(D, E, H),
        (   H
        ->  X is (E // D) * S + E mod D,
            Y is X + 1
        ;   X is E - (D * S),
            Y is X + S
        ).
    
    % qualify edge as horizontal (never fail!)
    %
    edge_is_horiz(D, E, H) :-
        E >= (D * (D + 1)) -> H = false ; H = true.
    
    % get 4 vertices of cell
    %
    cell_verts(D, (R, C), [TL, TR, BL, BR]) :-
        TL is R * (D + 1) + C,
        TR is TL + 1,
        BL is TR + D,
        BR is BL + 1.
    
    % get 4 edges of cell
    %
    cell_edges(D, (R, C), [N, S, W, E]) :-
        N is R * D + C,
        S is N + D,
        W is (D * (D + 1)) + R * (D + 1) + C,
        E is W + 1.
    
    % get adjacents at two extremities of edge I
    %
    edge_adjacents(D, I, G1, G2) :-
        edge_verts(D, I, X, Y),
        edge_verts_all(D, EVs),
        setof(E, U^V^(member(E - (U, V), EVs), E \= I, (U == X ; V == X)), G1),
        setof(E, U^V^(member(E - (U, V), EVs), E \= I, (U == Y ; V == Y)), G2).
    
    % get all edge_verts/4 for grid D
    %
    edge_verts_all(D, L) :-
        (   edge_verts_all_(D, L)
        ->  true
        ;   max_dimensions(D, _,_,_,_, S), %S is (D + 1) * (D + 2) - 1,
            findall(E - (X, Y),
                (   between(0, S, E),
                edge_verts(D, E, X, Y)
                ), L),
            assert(edge_verts_all_(D, L))
        ).
    
    :- dynamic edge_verts_all_/2.
    
    %%  %%%%%%%%%%%%%%%%%%%%
    
    :- begin_tests(index_square).
    
    test(1) :-
        cell_edges(2, (0,1), [1, 3, 7, 8]),
        cell_edges(2, (1,1), [3, 5, 10, 11]).
    
    test(2) :-
        cell_verts(2, (0,1), [1, 2, 4, 5]),
        cell_verts(2, (1,1), [4, 5, 7, 8]).
    
    test(3) :-
        edge_is_horiz(2, 0, true),
        edge_is_horiz(2, 5, true),
        edge_is_horiz(2, 6, false),
        edge_is_horiz(2, 9, false),
        edge_is_horiz(2, 11, false).
    
    test(4) :-
        edge_verts(2, 0, 0, 1),
        edge_verts(2, 3, 4, 5),
        edge_verts(2, 5, 7, 8),
        edge_verts(2, 6, 0, 3),
        edge_verts(2, 11, 5, 8).
    
    test(5) :-
        edge_adjacents(2, 0, A, B), A = [6], B = [1, 7],
        edge_adjacents(2, 9, [2, 6], [4]),
        edge_adjacents(2, 10, [2, 3, 7], [4, 5]).
    
    test(6) :-
        cell_edges(4, (2,1), [9, 13, 31, 32]).
    
    :- end_tests(index_square).