I'm totally stuck and have no idea how to go about solving this. Let's say I've an array
arr = [1, 4, 5, 10]
and a number
n = 8
I need shortest sequence from within arr which equals n. So for example following sequences within arr equals n
c1 = 5,1,1,1
c2 = 4,4
c3= 1,1,1,1,1,1,1,1
So in above case, our answer is c2 because it's shortest sequences in arr that equals sum.
I'm not sure what's the simplest way of finding a solution to above? Any ideas, or help will be really appreciated.
Thanks!
Edited:
As has been pointed before this is the minimum change coin problem, typically solved with dynamic programming. Here's a Python implementation solved in time complexity O(nC) and space complexity O(C), where n
is the number of coins and C
the required amount of money:
def min_change(V, C):
table, solution = min_change_table(V, C)
num_coins, coins = table[-1], []
if num_coins == float('inf'):
return []
while C > 0:
coins.append(V[solution[C]])
C -= V[solution[C]]
return coins
def min_change_table(V, C):
m, n = C+1, len(V)
table, solution = [0] * m, [0] * m
for i in xrange(1, m):
minNum, minIdx = float('inf'), -1
for j in xrange(n):
if V[j] <= i and 1 + table[i - V[j]] < minNum:
minNum = 1 + table[i - V[j]]
minIdx = j
table[i] = minNum
solution[i] = minIdx
return (table, solution)
In the above functions V
is the list of possible coins and C
the required amount of money. Now when you call the min_change
function the output is as expected:
min_change([1,4,5,10], 8)
> [4, 4]