windowsdriverinterruptwfpwindows-kernel

Two-way communication between kernel-mode driver and user-mode application?


I need a two-way communication between a kernel-mode WFP driver and a user-mode application. The driver initiates the communication by passing a URL to the application which then does a categorization of that URL (Entertainment, News, Adult, etc.) and passes that category back to the driver. The driver needs to know the category in the filter function because it may block certain web pages based on that information. I had a thread in the application that was making an I/O request that the driver would complete with the URL and a GUID, and then the application would write the category into the registry under that GUID where the driver would pick it up. Unfortunately, as the driver verifier pointed out, this is unstable because the Zw registry functions have to run at PASSIVE_LEVEL. I was thinking about trying the same thing with mapped memory buffers, but I’m not sure what the interrupt requirements are for that. Also, I thought about lowering the interrupt level before the registry function calls, but I don't know what the side effects of that are.


Solution

  • You just need to have two different kinds of I/O request.

    If you're using DeviceIoControl to retrieve the URLs (I think this would be the most suitable method) this is as simple as adding a second I/O control code.

    If you're using ReadFile or equivalent, things would normally get a bit messier, but as it happens in this specific case you only have two kinds of operations, one of which is a read (driver->application) and the other of which is a write (application->driver). So you could just use WriteFile to send the reply, including of course the GUID so that the driver can match up your reply to the right query.

    Another approach (more similar to your original one) would be to use a shared memory buffer. See this answer for more details. The problem with that idea is that you would either need to use a spinlock (at the cost of system performance and power consumption, and of course not being able to work on a single-core system) or to poll (which is both inefficient and not really suitable for time-sensitive operations).