public class IntermediateMessage {
private final ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock();
private final Lock read = readWriteLock.readLock();
private final Lock write = readWriteLock.writeLock();
private volatile double ratio;
public IntermediateMessage(){
this.ratio=1.0d;
}
public IntermediateMessage(double ratio){
this.ratio = ratio;
}
public double getRatio(){
read.lock();
try{
return this.ratio;
}
finally{
read.unlock();
}
}
public void setRatio(double ratio){
write.lock();
try{
this.ratio = ratio;
}
finally{
write.unlock();
}
}
}
I have this object. I have an instance of this object in my application and one thread is writing to the ratio variable while the other threads are reading the ratio. Is this correct way to protect the ratio variable? Do I need to declare ratio as volatile?
Do you need locking at all? Most likely not, according to the limited requirements you've described. But read this to be sure...
ratio
must always be consistent with other variables (e.g. in other objects) - i.e. if a set of variables must change in synchrony as a group with no one reading just part of the changes - then locking is required to give atomic consistency to the set of variables. Then consistent variables must be modified together within in a single locked region and readers must obtain the same lock before reading any of these set of variables (waiting in a blocked state, if necessary). Do you need the volatile modifier? Well, yes!
volatile
modifier is used in multi-threaded apps to guarantee that the value read by "readers" always matches the value written by "writers".