While doing my own BigInteger implementation, I got stuck with the extended GCD algorithm, which is fundamental for finding modular multiplicative inverse. As the well-known Euclidean approach performs too slow, with hybrid and binary algorithms only 5-10 times faster, the choice was for the Lehmer's modification to the classic algorithm. But the difficulty is that, when it comes to describing the Lehmer's, all books that I found (Knuth, Handbook of Applied Cryptography, Internets, etc) have the same shortcomings:
As for the first problem, I was initially surprised by being unable to find any real-world implementation (don't point me to the GNU MP library — it's not a source to learn from), but finally took inspiration by decompiling the Microsoft's implementation from .Net 4.0, which is obviously based on the ideas from the paper “A double-digit Lehmer-Euclid algorithm for finding the GCD of long integers” by Jebelean. The resulting function is large, it looks scary, but works just great.
But Microsoft's library provides the basic functionality only, no cofactors are computed. Well, to be precise, some cofactors are computed during the shorthand step, and during the very first step those cofactors simply are the initial ones, but after the longhand step is performed then they do not match anymore. My current solution is to update the “real” cofactors in parallel with the “substitute” ones (except the very first step), but it makes the performance to drop below zero: the function now completes only 25-50 % faster than the binary method in basic mode. So, the problem is that, while the input numbers are fully updated during longhand steps only, the cofactors are updated on each shorthand step's iteration as well, thus destroying almost any benefit from Lehmer's approach.
To speed up things a little, I implemented a “fused multiply-add” function, because a “fused multiply-multiply-subtract” really does help updating the input numbers, — but this time the impact was negligible. Another improvement is based on the fact that usually only one cofactor is necessary, so the other one can be just not computed at all. This should halve the overhead (or even more so, since the second number is usually significantly smaller than the first one), however in practice the overhead reduces only by 25 to 50 % of expected.
Consequently, my questions come down to this:
So, as much as I'm happy with the performance of basic algorithm, the opposite applies to the extended mode of operation, which is the primary in my case.
Finally, I consulted a mathematician and he quickly figured out the right formulae — very similar to those I was trying myself, bit still slightly different. This allowed to update the cofactors on longhand steps only, at the same time as the input numbers are fully updated.
However, to my big surprise, this measure alone had minor impact on the performance. Only when I re-implemented it as a “fused (A×X + B×Y)”, the speed improvement became noticeable. When computing both cofactors, it now runs at 56 % for 5-digit numbers and 34 % for 32K-digits, as compared to pure Lehmer GCD algorithm; for a single cofactor, the rate is 70 % and 52 % respectively. With previous implementations, it was merely 33% to 7% for both cofactors and 47 % to 14 % for single cofactor, so my dissatisfaction was obvious.
As for writing a paper as andy256 recommended so that other implementers would not have the same trouble, it won't be easy. I already wrote a “small” paper when explaining my current implementation to the mathematician, and it quite rapidly exceeded three A4-sized sheets — while containing the basic ideas only, without detailed explanations, overflow checks, branching, unrolling, etc. Now I partially understand why Knuth and others have used dirty tricks to keep the story short. Currently, I have no idea how to achieve the same level of simplicity while not loosing thoroughness; perhaps, it would require several big flowcharts combined with commentaries.
Update. It looks like I won't be able to complete and publish the library in near future (still have no luck in understanding Newton—Raphson division and Montgomery reduction), so I'll simply post the resulting function for those who are interested.
The code doesn't include obvious functions like ComputeGCD_Euclid
and general-purpose routines like ComputeDivisionLonghand
. The code also lacks any comments (with few exceptions) — you should be already familiar with Lehmer's idea in general and double-digit shorthand technique mentioned above, if you want to understand it and integrate into your own library.
An overview of number representation in my library. Digits are 32-bit unsigned integers, so that 64-bit unsigned and signed arithmetic may be used when needed. Digits are stored in a plain array (ValueDigits
) from least to most significant (LSB), the actual size is stored explicitly (ValueLength
), i. e. functions try to predict result size, but don't optimize memory consumption after computation. Objects are of value type (struct
in .Net), but they reference digit arrays; therefore, objects are invariant, i. e. a = a + 1
creates a new object instead of altering an existing one.
Public Shared Function ComputeGCD(ByVal uLeft As BigUInteger, ByVal uRight As BigUInteger,
ByRef uLeftInverse As BigUInteger, ByRef uRightInverse As BigUInteger, ByVal fComputeLeftInverse As Boolean, ByVal fComputeRightInverse As Boolean) As BigUInteger
Dim fSwap As Boolean = False
Select Case uLeft.CompareTo(uRight)
Case 0
uLeftInverse = Instance.Zero : uRightInverse = Instance.One : Return uRight
Case Is < 0
fSwap = fComputeLeftInverse : fComputeLeftInverse = fComputeRightInverse : fComputeRightInverse = fSwap
fSwap = True : Swap(uLeft, uRight)
End Select
Dim uResult As BigUInteger
If (uLeft.ValueLength = 1) AndAlso (uRight.ValueLength = 1) Then
Dim wLeftInverse As UInt32, wRightInverse As UInt32
uResult = ComputeGCD_Euclid(uLeft.DigitLowest, uRight.DigitLowest, wLeftInverse, wRightInverse)
uLeftInverse = wLeftInverse : uRightInverse = wRightInverse
ElseIf uLeft.ValueLength <= 2 Then
uResult = ComputeGCD_Euclid(uLeft, uRight, uLeftInverse, uRightInverse)
Else
uResult = ComputeGCD_Lehmer(uLeft, uRight, uLeftInverse, uRightInverse, fComputeLeftInverse, fComputeRightInverse)
End If
If fSwap Then Swap(uLeftInverse, uRightInverse)
Return uResult
End Function
Private Shared Function ComputeGCD_Lehmer(ByVal uLeft As BigUInteger, ByVal uRight As BigUInteger,
ByRef uLeftInverse As BigUInteger, ByRef uRightInverse As BigUInteger, ByVal fComputeLeftInverse As Boolean, ByVal fComputeRightInverse As Boolean) As BigUInteger
Dim uLeftCur As BigUInteger = uLeft, uRightCur As BigUInteger = uRight
Dim uLeftInvPrev As BigUInteger = Instance.One, uRightInvPrev As BigUInteger = Instance.Zero,
uLeftInvCur As BigUInteger = uRightInvPrev, uRightInvCur As BigUInteger = uLeftInvPrev,
fInvInit As Boolean = False, fIterationIsEven As Boolean = True
Dim dwLeftCur, dwRightCur As UInt64
Dim wLeftInvPrev, wRightInvPrev, wLeftInvCur, wRightInvCur As UInt32
Dim dwNumeratorMore, dwNumeratorLess, dwDenominatorMore, dwDenominatorLess, dwQuotientMore, dwQuotientLess As UInt64,
wQuotient As UInt32
Const nSubtractionThresholdBits As Byte = (5 - 1)
Dim ndxDigitMax As Integer, fRightIsShorter As Boolean
Dim fResultFound As Boolean = False
Dim uRemainder As BigUInteger = uRightCur, uQuotient As BigUInteger
Dim uTemp As BigUInteger = Nothing, dwTemp, dwTemp2 As UInt64
Do While uLeftCur.ValueLength > 2
ndxDigitMax = uLeftCur.ValueLength - 1 : fRightIsShorter = (uRightCur.ValueLength < uLeftCur.ValueLength)
Dim fShorthandStep As Boolean = True, fShorthandIterationIsEven As Boolean
If fRightIsShorter AndAlso (uLeftCur.ValueLength - uRightCur.ValueLength > 1) Then fShorthandStep = False
If fShorthandStep Then
dwLeftCur = uLeftCur.ValueDigits(ndxDigitMax - 1) Or (CULng(uLeftCur.ValueDigits(ndxDigitMax)) << DigitSize.Bits)
dwRightCur = uRightCur.ValueDigits(ndxDigitMax - 1) Or If(fRightIsShorter, DigitValue.Zero, CULng(uRightCur.ValueDigits(ndxDigitMax)) << DigitSize.Bits)
If ndxDigitMax >= 2 Then
Dim nNormHead As Byte = GetNormalizationHead(uLeftCur.ValueDigits(ndxDigitMax))
If nNormHead <> ByteValue.Zero Then
dwLeftCur = (dwLeftCur << nNormHead) Or (uLeftCur.ValueDigits(ndxDigitMax - 2) >> (DigitSize.Bits - nNormHead))
dwRightCur = (dwRightCur << nNormHead) Or (uRightCur.ValueDigits(ndxDigitMax - 2) >> (DigitSize.Bits - nNormHead))
End If
End If
If CUInt(dwRightCur >> DigitSize.Bits) = DigitValue.Zero Then fShorthandStep = False
End If
If fShorthandStep Then
' First iteration, where overflow may occur in general formulae.
If dwLeftCur = dwRightCur Then
fShorthandStep = False
Else
If dwLeftCur = DoubleValue.Full Then dwLeftCur >>= 1 : dwRightCur >>= 1
dwDenominatorMore = dwRightCur : dwDenominatorLess = dwRightCur + DigitValue.One
dwNumeratorMore = dwLeftCur + DigitValue.One : dwNumeratorLess = dwLeftCur
If (dwNumeratorMore >> nSubtractionThresholdBits) <= dwDenominatorMore Then
wQuotient = DigitValue.Zero
Do
wQuotient += DigitValue.One : dwNumeratorMore -= dwDenominatorMore
Loop While dwNumeratorMore >= dwDenominatorMore
dwQuotientMore = wQuotient
Else
dwQuotientMore = dwNumeratorMore \ dwDenominatorMore
If dwQuotientMore >= DigitValue.BitHi Then fShorthandStep = False
wQuotient = CUInt(dwQuotientMore)
End If
If fShorthandStep Then
If (dwNumeratorLess >> nSubtractionThresholdBits) <= dwDenominatorLess Then
wQuotient = DigitValue.Zero
Do
wQuotient += DigitValue.One : dwNumeratorLess -= dwDenominatorLess
Loop While dwNumeratorLess >= dwDenominatorLess
dwQuotientLess = wQuotient
Else
dwQuotientLess = dwNumeratorLess \ dwDenominatorLess
End If
If dwQuotientMore <> dwQuotientLess Then fShorthandStep = False
End If
End If
End If
If fShorthandStep Then
' Prepare for the second iteration.
wLeftInvPrev = DigitValue.Zero : wLeftInvCur = DigitValue.One
wRightInvPrev = DigitValue.One : wRightInvCur = wQuotient
dwTemp = dwLeftCur - wQuotient * dwRightCur : dwLeftCur = dwRightCur : dwRightCur = dwTemp
fShorthandIterationIsEven = True
fIterationIsEven = Not fIterationIsEven
' Other iterations, no overflow possible(?).
Do
If fShorthandIterationIsEven Then
If dwRightCur = wRightInvCur Then Exit Do
dwDenominatorMore = dwRightCur - wRightInvCur : dwDenominatorLess = dwRightCur + wLeftInvCur
dwNumeratorMore = dwLeftCur + wRightInvPrev : dwNumeratorLess = dwLeftCur - wLeftInvPrev
Else
If dwRightCur = wLeftInvCur Then Exit Do
dwDenominatorMore = dwRightCur - wLeftInvCur : dwDenominatorLess = dwRightCur + wRightInvCur
dwNumeratorMore = dwLeftCur + wLeftInvPrev : dwNumeratorLess = dwLeftCur - wRightInvPrev
End If
If (dwNumeratorMore >> nSubtractionThresholdBits) <= dwDenominatorMore Then
wQuotient = DigitValue.Zero
Do
wQuotient += DigitValue.One : dwNumeratorMore -= dwDenominatorMore
Loop While dwNumeratorMore >= dwDenominatorMore
dwQuotientMore = wQuotient
Else
dwQuotientMore = dwNumeratorMore \ dwDenominatorMore
If dwQuotientMore >= DigitValue.BitHi Then Exit Do
wQuotient = CUInt(dwQuotientMore)
End If
If (dwNumeratorLess >> nSubtractionThresholdBits) <= dwDenominatorLess Then
wQuotient = DigitValue.Zero
Do
wQuotient += DigitValue.One : dwNumeratorLess -= dwDenominatorLess
Loop While dwNumeratorLess >= dwDenominatorLess
dwQuotientLess = wQuotient
Else
dwQuotientLess = dwNumeratorLess \ dwDenominatorLess
End If
If dwQuotientMore <> dwQuotientLess Then Exit Do
dwTemp = wLeftInvPrev + wQuotient * wLeftInvCur : dwTemp2 = wRightInvPrev + wQuotient * wRightInvCur
If (dwTemp >= DigitValue.BitHi) OrElse (dwTemp2 >= DigitValue.BitHi) Then Exit Do
wLeftInvPrev = wLeftInvCur : wLeftInvCur = CUInt(dwTemp)
wRightInvPrev = wRightInvCur : wRightInvCur = CUInt(dwTemp2)
dwTemp = dwLeftCur - wQuotient * dwRightCur : dwLeftCur = dwRightCur : dwRightCur = dwTemp
fShorthandIterationIsEven = Not fShorthandIterationIsEven
fIterationIsEven = Not fIterationIsEven
Loop
End If
If (Not fShorthandStep) OrElse (wRightInvPrev = DigitValue.Zero) Then
' Longhand step.
uQuotient = ComputeDivisionLonghand(uLeftCur, uRightCur, uTemp) : If uTemp.IsZero Then fResultFound = True : Exit Do
uRemainder = uTemp
fIterationIsEven = Not fIterationIsEven
If fComputeLeftInverse Then
uTemp = uLeftInvPrev + uQuotient * uLeftInvCur : uLeftInvPrev = uLeftInvCur : uLeftInvCur = uTemp
End If
If fComputeRightInverse Then
uTemp = uRightInvPrev + uQuotient * uRightInvCur : uRightInvPrev = uRightInvCur : uRightInvCur = uTemp
End If
fInvInit = True
uLeftCur = uRightCur : uRightCur = uRemainder
Else
' Shorthand step finalization.
If Not fInvInit Then
If fComputeLeftInverse Then uLeftInvPrev = wLeftInvPrev : uLeftInvCur = wLeftInvCur
If fComputeRightInverse Then uRightInvPrev = wRightInvPrev : uRightInvCur = wRightInvCur
fInvInit = True
Else
If fComputeLeftInverse Then ComputeFusedMulMulAdd(uLeftInvPrev, uLeftInvCur, wLeftInvPrev, wLeftInvCur, wRightInvPrev, wRightInvCur)
If fComputeRightInverse Then ComputeFusedMulMulAdd(uRightInvPrev, uRightInvCur, wLeftInvPrev, wLeftInvCur, wRightInvPrev, wRightInvCur)
End If
ComputeFusedMulMulSub(uLeftCur, uRightCur, wLeftInvPrev, wLeftInvCur, wRightInvPrev, wRightInvCur, fShorthandIterationIsEven)
End If
Loop
' Final rounds: numbers are quite short now.
If Not fResultFound Then
ndxDigitMax = uLeftCur.ValueLength - 1 : fRightIsShorter = (uRightCur.ValueLength < uLeftCur.ValueLength)
If ndxDigitMax = 0 Then
dwLeftCur = uLeftCur.ValueDigits(0)
dwRightCur = uRightCur.ValueDigits(0)
Else
dwLeftCur = uLeftCur.ValueDigits(0) Or (CULng(uLeftCur.ValueDigits(1)) << DigitSize.Bits)
dwRightCur = uRightCur.ValueDigits(0) Or If(fRightIsShorter, DigitValue.Zero, CULng(uRightCur.ValueDigits(1)) << DigitSize.Bits)
End If
Do While dwLeftCur >= DigitValue.BitHi
Dim dwRemainder As UInt64 = dwLeftCur
If (dwRemainder >> nSubtractionThresholdBits) <= dwRightCur Then
wQuotient = DigitValue.Zero
Do
wQuotient += DigitValue.One : dwRemainder -= dwRightCur
Loop While dwRemainder >= dwRightCur
dwQuotientMore = wQuotient
Else
dwQuotientMore = dwLeftCur \ dwRightCur
dwRemainder = dwLeftCur - dwQuotientMore * dwRightCur
End If
If dwRemainder = DigitValue.Zero Then fResultFound = True : Exit Do
fIterationIsEven = Not fIterationIsEven
If dwQuotientMore < DigitValue.BitHi Then
wQuotient = CUInt(dwQuotientMore)
If fComputeLeftInverse Then ComputeFusedMulAdd(uLeftInvPrev, uLeftInvCur, wQuotient)
If fComputeRightInverse Then ComputeFusedMulAdd(uRightInvPrev, uRightInvCur, wQuotient)
Else
If fComputeLeftInverse Then
uTemp = uLeftInvPrev + dwQuotientMore * uLeftInvCur : uLeftInvPrev = uLeftInvCur : uLeftInvCur = uTemp
End If
If fComputeRightInverse Then
uTemp = uRightInvPrev + dwQuotientMore * uRightInvCur : uRightInvPrev = uRightInvCur : uRightInvCur = uTemp
End If
End If
dwLeftCur = dwRightCur : dwRightCur = dwRemainder
Loop
If fResultFound Then
uRightCur = dwRightCur
Else
' Final rounds: both numbers have only one digit now, and this digit has MS-bit unset.
Dim wLeftCur As UInt32 = CUInt(dwLeftCur), wRightCur As UInt32 = CUInt(dwRightCur)
Do
Dim wRemainder As UInt32 = wLeftCur
If (wRemainder >> nSubtractionThresholdBits) <= wRightCur Then
wQuotient = DigitValue.Zero
Do
wQuotient += DigitValue.One : wRemainder -= wRightCur
Loop While wRemainder >= wRightCur
Else
wQuotient = wLeftCur \ wRightCur
wRemainder = wLeftCur - wQuotient * wRightCur
End If
If wRemainder = DigitValue.Zero Then fResultFound = True : Exit Do
fIterationIsEven = Not fIterationIsEven
If fComputeLeftInverse Then ComputeFusedMulAdd(uLeftInvPrev, uLeftInvCur, wQuotient)
If fComputeRightInverse Then ComputeFusedMulAdd(uRightInvPrev, uRightInvCur, wQuotient)
wLeftCur = wRightCur : wRightCur = wRemainder
Loop
uRightCur = wRightCur
End If
End If
If fComputeLeftInverse Then
uLeftInverse = If(fIterationIsEven, uRight - uLeftInvCur, uLeftInvCur)
End If
If fComputeRightInverse Then
uRightInverse = If(fIterationIsEven, uRightInvCur, uLeft - uRightInvCur)
End If
Return uRightCur
End Function
''' <remarks>All word-sized parameters must have their most-significant bit unset.</remarks>
Private Shared Sub ComputeFusedMulMulAdd(
ByRef uLeftInvPrev As BigUInteger, ByRef uLeftInvCur As BigUInteger,
ByVal wLeftInvPrev As UInt32, ByVal wLeftInvCur As UInt32, ByVal wRightInvPrev As UInt32, ByVal wRightInvCur As UInt32)
Dim ndxDigitMaxPrev As Integer = uLeftInvPrev.ValueLength - 1, ndxDigitMaxCur As Integer = uLeftInvCur.ValueLength - 1,
ndxDigitMaxNew As Integer = ndxDigitMaxCur + 1
Dim awLeftInvPrev() As UInt32 = uLeftInvPrev.ValueDigits, awLeftInvCur() As UInt32 = uLeftInvCur.ValueDigits
Dim awLeftInvPrevNew(0 To ndxDigitMaxNew) As UInt32, awLeftInvCurNew(0 To ndxDigitMaxNew) As UInt32
Dim dwResult As UInt64, wCarryLeftPrev As UInt32 = DigitValue.Zero, wCarryLeftCur As UInt32 = DigitValue.Zero
Dim wDigitLeftInvPrev, wDigitLeftInvCur As UInt32
For ndxDigit As Integer = 0 To ndxDigitMaxPrev
wDigitLeftInvPrev = awLeftInvPrev(ndxDigit) : wDigitLeftInvCur = awLeftInvCur(ndxDigit)
dwResult = wCarryLeftPrev + wLeftInvPrev * CULng(wDigitLeftInvPrev) + wRightInvPrev * CULng(wDigitLeftInvCur)
awLeftInvPrevNew(ndxDigit) = CUInt(dwResult And DigitValue.Full) : wCarryLeftPrev = CUInt(dwResult >> DigitSize.Bits)
dwResult = wCarryLeftCur + wLeftInvCur * CULng(wDigitLeftInvPrev) + wRightInvCur * CULng(wDigitLeftInvCur)
awLeftInvCurNew(ndxDigit) = CUInt(dwResult And DigitValue.Full) : wCarryLeftCur = CUInt(dwResult >> DigitSize.Bits)
Next
If ndxDigitMaxCur > ndxDigitMaxPrev Then
For ndxDigit As Integer = ndxDigitMaxPrev + 1 To ndxDigitMaxCur
wDigitLeftInvCur = awLeftInvCur(ndxDigit)
dwResult = wCarryLeftPrev + wRightInvPrev * CULng(wDigitLeftInvCur)
awLeftInvPrevNew(ndxDigit) = CUInt(dwResult And DigitValue.Full) : wCarryLeftPrev = CUInt(dwResult >> DigitSize.Bits)
dwResult = wCarryLeftCur + wRightInvCur * CULng(wDigitLeftInvCur)
awLeftInvCurNew(ndxDigit) = CUInt(dwResult And DigitValue.Full) : wCarryLeftCur = CUInt(dwResult >> DigitSize.Bits)
Next
End If
If wCarryLeftPrev <> DigitValue.Zero Then awLeftInvPrevNew(ndxDigitMaxNew) = wCarryLeftPrev
If wCarryLeftCur <> DigitValue.Zero Then awLeftInvCurNew(ndxDigitMaxNew) = wCarryLeftCur
uLeftInvPrev = New BigUInteger(awLeftInvPrevNew) : uLeftInvCur = New BigUInteger(awLeftInvCurNew)
End Sub
''' <remarks>All word-sized parameters must have their most-significant bit unset.</remarks>
Private Shared Sub ComputeFusedMulMulSub(
ByRef uLeftCur As BigUInteger, ByRef uRightCur As BigUInteger,
ByVal wLeftInvPrev As UInt32, ByVal wLeftInvCur As UInt32, ByVal wRightInvPrev As UInt32, ByVal wRightInvCur As UInt32,
ByVal fShorthandIterationIsEven As Boolean)
Dim ndxDigitMax As Integer = uLeftCur.ValueLength - 1,
fRightIsShorter As Boolean = (uRightCur.ValueLength < uLeftCur.ValueLength),
ndxDigitStop As Integer = If(fRightIsShorter, ndxDigitMax - 1, ndxDigitMax)
Dim awLeftCur() As UInt32 = uLeftCur.ValueDigits, awRightCur() As UInt32 = uRightCur.ValueDigits
Dim awLeftNew(0 To ndxDigitMax) As UInt32, awRightNew(0 To ndxDigitStop) As UInt32
Dim iTemp As Int64, wCarryLeft As Int32 = 0I, wCarryRight As Int32 = 0I
Dim wDigitLeftCur, wDigitRightCur As UInt32
If fShorthandIterationIsEven Then
For ndxDigit As Integer = 0 To ndxDigitStop
wDigitLeftCur = awLeftCur(ndxDigit) : wDigitRightCur = awRightCur(ndxDigit)
iTemp = wCarryLeft + CLng(wDigitRightCur) * wRightInvPrev - CLng(wDigitLeftCur) * wLeftInvPrev
awLeftNew(ndxDigit) = CUInt(iTemp And DigitValue.Full) : wCarryLeft = CInt(iTemp >> DigitSize.Bits)
iTemp = wCarryRight + CLng(wDigitLeftCur) * wLeftInvCur - CLng(wDigitRightCur) * wRightInvCur
awRightNew(ndxDigit) = CUInt(iTemp And DigitValue.Full) : wCarryRight = CInt(iTemp >> DigitSize.Bits)
Next
If fRightIsShorter Then
wDigitLeftCur = awLeftCur(ndxDigitMax)
iTemp = wCarryLeft - CLng(wDigitLeftCur) * wLeftInvPrev
awLeftNew(ndxDigitMax) = CUInt(iTemp And DigitValue.Full)
End If
Else
For ndxDigit As Integer = 0 To ndxDigitStop
wDigitLeftCur = awLeftCur(ndxDigit) : wDigitRightCur = awRightCur(ndxDigit)
iTemp = wCarryLeft + CLng(wDigitLeftCur) * wLeftInvPrev - CLng(wDigitRightCur) * wRightInvPrev
awLeftNew(ndxDigit) = CUInt(iTemp And DigitValue.Full) : wCarryLeft = CInt(iTemp >> DigitSize.Bits)
iTemp = wCarryRight + CLng(wDigitRightCur) * wRightInvCur - CLng(wDigitLeftCur) * wLeftInvCur
awRightNew(ndxDigit) = CUInt(iTemp And DigitValue.Full) : wCarryRight = CInt(iTemp >> DigitSize.Bits)
Next
If fRightIsShorter Then
wDigitLeftCur = awLeftCur(ndxDigitMax)
iTemp = wCarryLeft + CLng(wDigitLeftCur) * wLeftInvPrev
awLeftNew(ndxDigitMax) = CUInt(iTemp And DigitValue.Full)
End If
End If
uLeftCur = New BigUInteger(awLeftNew) : uRightCur = New BigUInteger(awRightNew)
End Sub
''' <remarks>All word-sized parameters must have their most-significant bit unset.</remarks>
Private Shared Sub ComputeFusedMulAdd(ByRef uLeftInvPrev As BigUInteger, ByRef uLeftInvCur As BigUInteger, ByVal wQuotient As UInt32)
Dim ndxDigitPrevMax As Integer = uLeftInvPrev.ValueLength - 1, ndxDigitCurMax As Integer = uLeftInvCur.ValueLength - 1,
ndxDigitNewMax As Integer = ndxDigitCurMax + 1
Dim awLeftInvPrev() As UInt32 = uLeftInvPrev.ValueDigits, awLeftInvCur() As UInt32 = uLeftInvCur.ValueDigits,
awLeftInvNew(0 To ndxDigitNewMax) As UInt32
Dim dwResult As UInt64 = DigitValue.Zero, wCarry As UInt32 = DigitValue.Zero
For ndxDigit As Integer = 0 To ndxDigitPrevMax
dwResult = CULng(wCarry) + awLeftInvPrev(ndxDigit) + CULng(wQuotient) * awLeftInvCur(ndxDigit)
awLeftInvNew(ndxDigit) = CUInt(dwResult And DigitValue.Full) : wCarry = CUInt(dwResult >> DigitSize.Bits)
Next
For ndxDigit As Integer = ndxDigitPrevMax + 1 To ndxDigitCurMax
dwResult = CULng(wCarry) + CULng(wQuotient) * awLeftInvCur(ndxDigit)
awLeftInvNew(ndxDigit) = CUInt(dwResult And DigitValue.Full) : wCarry = CUInt(dwResult >> DigitSize.Bits)
Next
If wCarry <> DigitValue.Zero Then awLeftInvNew(ndxDigitNewMax) = wCarry
uLeftInvPrev = uLeftInvCur : uLeftInvCur = New BigUInteger(awLeftInvNew)
End Sub
If you want to use this code directly, you may need Visual Basic 2012 compiler for some constructs — I didn't check on previous versions; nor am I aware of minimum .Net version (at least 3.5 should suffice); compiled applications are known to run on Mono, although with inferior performance. The only thing I'm absolutely sure about is that one shouldn't try to use automatic VB-to-C# translators, as they are terribly bad in subjects like this; rely on your own head only.