pythonmatplotlibscikit-learn

sklearn plot confusion matrix with labels


I want to plot a confusion matrix to visualize the classifer's performance, but it shows only the numbers of the labels, not the labels themselves:

from sklearn.metrics import confusion_matrix
import pylab as pl
y_test=['business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business']

pred=array(['health', 'business', 'business', 'business', 'business',
       'business', 'health', 'health', 'business', 'business', 'business',
       'business', 'business', 'business', 'business', 'business',
       'health', 'health', 'business', 'health'], 
      dtype='|S8')

cm = confusion_matrix(y_test, pred)
pl.matshow(cm)
pl.title('Confusion matrix of the classifier')
pl.colorbar()
pl.show()

How can I add the labels (health, business..etc) to the confusion matrix?


Solution

  • As hinted in this question, you have to "open" the lower-level artist API, by storing the figure and axis objects passed by the matplotlib functions you call (the fig, ax and cax variables below). You can then replace the default x- and y-axis ticks using set_xticklabels/set_yticklabels:

    from sklearn.metrics import confusion_matrix
    
    labels = ['business', 'health']
    cm = confusion_matrix(y_test, pred, labels)
    print(cm)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(cm)
    plt.title('Confusion matrix of the classifier')
    fig.colorbar(cax)
    ax.set_xticklabels([''] + labels)
    ax.set_yticklabels([''] + labels)
    plt.xlabel('Predicted')
    plt.ylabel('True')
    plt.show()
    

    Note that I passed the labels list to the confusion_matrix function to make sure it's properly sorted, matching the ticks.

    This results in the following figure:

    enter image description here