I can use pandas dropna() functionality to remove rows with some or all columns set as NA's. Is there an equivalent function for dropping rows with all columns having value 0?
P kt b tt mky depth
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 1.1 3 4.5 2.3 9.0
In this example, we would like to drop the first 4 rows from the data frame.
It turns out this can be nicely expressed in a vectorized fashion:
> df = pd.DataFrame({'a':[0,0,1,1], 'b':[0,1,0,1]})
> df = df[(df.T != 0).any()]
> df
a b
1 0 1
2 1 0
3 1 1