c++c++11c++14variadic-templates

Expand parameter packs with different lengths


I would like to 'generate' a jump table of function pointers. The functions which are pointed to are templated with two types. There should be a different function instanciated for every possible pair in two list of types. Ideally, we could have something like:

#include <tuple>

template <typename X, typename Y>
void foo()
{}

template <typename... Xs, typename... Ys>
void bar(const std::tuple<Xs...>&, const std::tuple<Ys...>&)
{
  using fun_ptr_type = void (*) (void);
  static constexpr fun_ptr_type jump_table[sizeof...(Xs) * sizeof...(Ys)]
    = {&foo<Xs, Ys>...};
}

int main ()
{
  using tuple0 = std::tuple<int, char, double>;
  using tuple1 = std::tuple<float, unsigned long>;

  bar(tuple0{}, tuple1{});
}

As expected, it fails when tuples have different lengths :

foo.cc:15:20: error: pack expansion contains parameter packs 'Xs' and 'Ys' that have different lengths (3 vs. 2)
    = {&foo<Xs, Ys>...};
            ~~  ~~ ^
foo.cc:23:3: note: in instantiation of function template specialization 'bar<int, char, double, float, unsigned long>' requested here
  bar(tuple0{}, tuple1{});
  ^
1 error generated.

To achieve this kind of functionality, I already tried and succeeded with an indirection (a first jump table which contains pointers to functions with another jump table), but I find it clumsy.

So, my question is: is there a workaround to this?


Solution

  • Your sample code is wrong, even in case that it compiles (i.e. when sizeof...(Xs) == sizeof...(Ys)). Say, you have N-ary tuples, then jump_table has N*N elements, but only first N elements are initialized with the function ptrs.

    First, you need to inner join the 2 lists of types:

    template<class A, class B>
    struct Pair;
    
    template<class... Ts>
    struct List {};
    
    template<class T, class... Ts>
    using mul = List<Pair<T, Ts>...>;
    
    template<class...>
    struct cat;
    
    template<class T>
    struct cat<T>
    {
        using type = T;
    };
    
    template<class... As, class... Bs>
    struct cat<List<As...>, List<Bs...>>
    {
        using type = List<As..., Bs...>;
    };
    
    template<class A, class B, class... Ts>
    struct cat<A, B, Ts...>
    {
        using type = typename cat<typename cat<A, B>::type, Ts...>::type;
    };
    
    template<class A, class B>
    struct join;
    
    template<class... As, class... Bs>
    struct join<List<As...>, List<Bs...>>
    {
        using type = typename cat<mul<As, Bs...>...>::type;
    };
    

    for example,

    join<List<int[1], int[2]>, List<float[1], float[2], float[3]>>::type
    

    gives you

    List<Pair<int[1], float[1]>, Pair<int[1], float[2]>, Pair<int[1], float[3]>, Pair<int[2], float[1]>, Pair<int[2], float[2]>, Pair<int[2], float[3]>
    

    Back to your example:

    template <typename X, typename Y>
    void foo()
    {}
    
    template<class T, std::size_t N>
    struct jump_table
    {
        template<class... As, class... Bs>
        constexpr jump_table(List<Pair<As, Bs>...>)
          : table{&foo<As, Bs>...}
        {}
        
        T table[N];
    };
    
    template <typename... Xs, typename... Ys>
    void bar(const std::tuple<Xs...>&, const std::tuple<Ys...>&)
    {
      using fun_ptr_type = void (*) (void);
      static constexpr jump_table<fun_ptr_type, sizeof...(Xs) * sizeof...(Ys)> table
        = {typename join<List<Xs...>, List<Ys...>>::type()};
    }
    
    int main ()
    {
      using tuple0 = std::tuple<int, char, double>;
      using tuple1 = std::tuple<float, unsigned long>;
    
      bar(tuple0{}, tuple1{});
    }
    

    This should do what you expected.