fn change(a: &mut i32, b: &mut i32) {
let c = *a;
*a = *b;
*b = c;
}
fn main() {
let mut v = vec![1, 2, 3];
change(&mut v[0], &mut v[1]);
}
When I compile the code above, it has the error:
error[E0499]: cannot borrow `v` as mutable more than once at a time
--> src/main.rs:9:32
|
9 | change(&mut v[0], &mut v[1]);
| - ^ - first borrow ends here
| | |
| | second mutable borrow occurs here
| first mutable borrow occurs here
Why does the compiler prohibit it? v[0]
and v[1]
occupy different memory positions, so it's not dangerous to use these together. And what should I do if I come across this problem?
You can solve this with split_at_mut()
:
let mut v = vec![1, 2, 3];
let (a, b) = v.split_at_mut(1); // Returns (&mut [1], &mut [2, 3])
change(&mut a[0], &mut b[0]);
There are uncountably many safe things to do that the compiler unfortunately does not recognize yet. split_at_mut()
is just like that, a safe abstraction implemented with an unsafe
block internally.
We can do that too, for this problem. The following is something I use in code where I need to separate all three cases anyway (I: Index out of bounds, II: Indices equal, III: Separate indices).
enum Pair<T> {
Both(T, T),
One(T),
None,
}
fn index_twice<T>(slc: &mut [T], a: usize, b: usize) -> Pair<&mut T> {
if a == b {
slc.get_mut(a).map_or(Pair::None, Pair::One)
} else {
if a >= slc.len() || b >= slc.len() {
Pair::None
} else {
// safe because a, b are in bounds and distinct
unsafe {
let ar = &mut *(slc.get_unchecked_mut(a) as *mut _);
let br = &mut *(slc.get_unchecked_mut(b) as *mut _);
Pair::Both(ar, br)
}
}
}
}