After two days of searching and trying I couldn't implement Hilbert Curve in java.
I need to fill (for example) 64-pixels into an square-8x8-image based on Hilbert curve. I did the same based on Zig-Zog curve, but (as I suppose to do some feature extraction) the result is not satisfying.
Result:
Can anybody help me out?
EDIT:
for example if I gonna write a function to return indexing of square-matrix based on Zig-Zog curve, it would be like this:
public class Source {
public static void main(String[] args) {
int matrixWidth = 4;
for (int col = 0; col < matrixWidth; col++){
for (int row = 0; row < matrixWidth; row++){
int[] temp = zigZog(row, col, matrixWidth);
System.out.println(temp[0] + ", " + temp[1]);
}
}
}
// >>> zig-zog indexing
public static int[] zigZog(int row, int col, int matrixWidth){
if (col%2 == 1){
int[] temp = {((matrixWidth -1) - row), col};
return temp;
} else {
int[] temp = {row, col};
return temp;
}
}
}
Well, it seems that nobody was interested in my Question, I have to do it on my own.
This code blew may return the indices order, based on Hilbert-Curve which I convert it from a python code, which was provided in here (frankly it takes me a while to convert it to Java [no useful auto-converter exists out there], python is really Hard to understand, it seem like it has no structure):
public class Source {
public static void main(String[] args) {
int current_square_num = 4;
int row_num = 2;
int col_num = 2;
int arg_num = 2;
char[][][][] hilbert_map = new char[current_square_num][row_num][col_num][arg_num];
// >>> 'a': {(0, 0): (0, 'd'), (0, 1): (1, 'a'), (1, 0): (3, 'b'), (1, 1): (2, 'a')}
hilbert_map[0][0][0][0] = '0';
hilbert_map[0][0][0][1] = 'd';
hilbert_map[0][0][1][0] = '1';
hilbert_map[0][0][1][1] = 'a';
hilbert_map[0][1][0][0] = '3';
hilbert_map[0][1][0][1] = 'b';
hilbert_map[0][1][1][0] = '2';
hilbert_map[0][1][1][1] = 'a';
// >>> 'b': {(0, 0): (2, 'b'), (0, 1): (1, 'b'), (1, 0): (3, 'a'), (1, 1): (0, 'c')}
hilbert_map[1][0][0][0] = '2';
hilbert_map[1][0][0][1] = 'b';
hilbert_map[1][0][1][0] = '1';
hilbert_map[1][0][1][1] = 'b';
hilbert_map[1][1][0][0] = '3';
hilbert_map[1][1][0][1] = 'a';
hilbert_map[1][1][1][0] = '0';
hilbert_map[1][1][1][1] = 'c';
// >>> 'c': {(0, 0): (2, 'c'), (0, 1): (3, 'd'), (1, 0): (1, 'c'), (1, 1): (0, 'b')}
hilbert_map[2][0][0][0] = '2';
hilbert_map[2][0][0][1] = 'c';
hilbert_map[2][0][1][0] = '3';
hilbert_map[2][0][1][1] = 'd';
hilbert_map[2][1][0][0] = '1';
hilbert_map[2][1][0][1] = 'c';
hilbert_map[2][1][1][0] = '0';
hilbert_map[2][1][1][1] = 'b';
// >>> 'd': {(0, 0): (0, 'a'), (0, 1): (3, 'c'), (1, 0): (1, 'd'), (1, 1): (2, 'd')}
hilbert_map[3][0][0][0] = '0';
hilbert_map[3][0][0][1] = 'a';
hilbert_map[3][0][1][0] = '3';
hilbert_map[3][0][1][1] = 'c';
hilbert_map[3][0][1][0] = '1';
hilbert_map[3][0][1][1] = 'd';
hilbert_map[3][1][1][0] = '2';
hilbert_map[3][1][1][1] = 'd';
double order = 3;
for (int col = 0; col < Math.pow(2, order); col++) {
for (int row = 0; row < Math.pow(2, order); row++) {
System.out.println("(" + row + ", " + col + "): " + point_to_hilbert(row, col, (int) order, hilbert_map));
}
}
}
public static int point_to_hilbert(int x, int y, int order, char[][][][] hilbert_map) {
int position = 0;
int current_square = 0 /* 'a' */;
for (int i = 0; i < order; i++) {
position = position << 2; // >>> position <<= 2
int quad_x;
int quad_y;
if ((x & (1 << i)) != 0) { // >>> quad_x = 1 if x & (1 << i) else 0
quad_x = 1;
} else {
quad_x = 0;
}
if ((y & (1 << i)) != 0) { // >>> quad_y = 1 if y & (1 << i) else 0
quad_y = 1;
} else {
quad_y = 0;
}
current_square = 0;
// >>> quad_position, current_square = hilbert_map[current_square][(quad_x, quad_y)]
char quad_position = hilbert_map[current_square][quad_x][quad_y][0];
current_square = Character.getNumericValue(hilbert_map[current_square][quad_x][quad_y][1]);
// >>> position |= quad_position
position = position | Character.getNumericValue(quad_position);
}
return position;
}
}
Enjoy!