Custom function to loop over a group in a dataframe.
Here is some sample data:
set.seed(42)
tm <- as.numeric(c("1", "2", "3", "3", "2", "1", "2", "3", "1", "1"))
d <- as.numeric(sample(0:2, size = 10, replace = TRUE))
t <- as.numeric(sample(0:2, size = 10, replace = TRUE))
h <- as.numeric(sample(0:2, size = 10, replace = TRUE))
df <- as.data.frame(cbind(tm, d, t, h))
df$p <- rowSums(df[2:4])
I created a custom function to calculate the value w:
calc <- function(x) {
data <- x
w <- (1.27*sum(data$d) + 1.62*sum(data$t) + 2.10*sum(data$h)) / sum(data$p)
w
}
When I run the function on the entire data set, I get the following answer:
calc(df)
[1]1.664474
Ideally, I want to return results that are grouped by tm, e.g.:
tm w
1 result of calc
2 result of calc
3 result of calc
So far I have tried using aggregate
with my function, but I get the following error:
aggregate(df, by = list(tm), FUN = calc)
Error in data$d : $ operator is invalid for atomic vectors
I feel like I have stared at this too long and there is an obvious answer.
Using dplyr
library(dplyr)
df %>%
group_by(tm) %>%
do(data.frame(val=calc(.)))
# tm val
#1 1 1.665882
#2 2 1.504545
#3 3 1.838000
If we change the function slightly to include multiple arguments, this could also work with summarise
calc1 <- function(d1, t1, h1, p1){
(1.27*sum(d1) + 1.62*sum(t1) + 2.10*sum(h1) )/sum(p1) }
df %>%
group_by(tm) %>%
summarise(val=calc1(d, t, h, p))
# tm val
#1 1 1.665882
#2 2 1.504545
#3 3 1.838000