Edit
Here's a new version which correctly applies the length and model but doesn't position the model correctly. I figured it might help.
http://codepen.io/pixelass/pen/78f9e97579f99dc4ae0473e33cae27d5?editors=001
I have 2 canvas instances
On the model view the user can drag the handles to modify the model The result view should then apply the model to every segment (relatively)
This is just a basic l-system logic for fractal curves though I am having problems applying the model to the segments.
Se the picture below: The red lines should replicate the model, but I can't figure out how to correctly apply the logic
I have a demo version here: http://codepen.io/pixelass/pen/c4d7650af7ce4901425b326ad7a4b259
// simplify Math
'use strict';
Object.getOwnPropertyNames(Math).map(function(prop) {
window[prop] = Math[prop];
});
// add missing math functions
var rad = (degree)=> {
return degree * PI / 180;
};
var deg = (radians)=> {
return radians * 180 / PI;
};
// get our drawing areas
var model = document.getElementById('model');
var modelContext = model.getContext('2d');
var result = document.getElementById('result');
var resultContext = result.getContext('2d');
var setSize = function setSize() {
model.height = 200;
model.width = 200;
result.height = 400;
result.width = 400;
};
// size of the grabbing dots
var dotSize = 5;
// flag to determine if we are grabbing a point
var grab = -1;
// set size to init instances
setSize();
//
var iterations = 1;
// define points
// this only defines the initial model
var returnPoints = function returnPoints(width) {
return [{
x: 0,
y: width
}, {
x: width / 3,
y: width
}, {
x: width / 2,
y: width / 3*2
}, {
x: width / 3 * 2,
y: width
}, {
x: width,
y: width
}];
};
// set initial state for model
var points = returnPoints(model.width);
// handle interaction
// grab points only if hovering
var grabPoint = function grabPoint(e) {
var X = e.layerX;
var Y = e.layerY;
for (var i = 1; i < points.length - 1; i++) {
if (abs(X - points[i].x) < dotSize && abs(Y - points[i].y) < dotSize) {
model.classList.add('grabbing');
grab = i;
}
}
};
// release point
var releasePoint = function releasePoint(e) {
if (grab > -1) {
model.classList.add('grab');
model.classList.remove('grabbing');
}
grab = -1;
};
// set initial state for result
// handle mouse movement on the model canvas
var handleMove = function handleMove(e) {
// determine current mouse position
var X = e.layerX;
var Y = e.layerY;
// clear classes
model.classList.remove('grabbing');
model.classList.remove('grab');
// check if hovering a dot
for (var i = 1; i < points.length - 1; i++) {
if (abs(X - points[i].x) < dotSize && abs(Y - points[i].y) < dotSize) {
// indicate grabbable
model.classList.add('grab');
}
}
// if grabbing
if (grab > -1) {
// indicate grabbing
model.classList.add('grabbing');
// modify dot on the model canvas
points[grab] = {
x: X,
y: Y
};
// modify dots on the result canvas
drawSegment({
x: points[grab - 1].x,
y: points[grab - 1].y
}, {
x: X,
y: Y
});
}
};
let m2 = points[1].x / points[4].x
let m3 = points[2].x / points[4].x
let m4 = points[3].x / points[4].x
let n2 = points[1].y / points[4].y
let n3 = points[2].y / points[4].y
let n4 = points[3].y / points[4].y
var drawSegment = function drawSegment(start, end) {
var dx = end.x - start.x
var dy = end.y - start.y
var dist = sqrt(dx * dx + dy * dy)
var angle = atan2(dy, dx)
let x1 = end.x
let y1 = end.y
let x2 = round(cos(angle) * dist)
let y2 = round(sin(angle) * dist)
resultContext.srtokeStyle = 'red'
resultContext.beginPath()
resultContext.moveTo(x1, y1)
resultContext.lineTo(x2, y2)
resultContext.stroke()
m2 = points[1].x / points[4].x
m3 = points[2].x / points[4].x
m4 = points[3].x / points[4].x
n2 = points[1].y / points[4].y
n3 = points[2].y / points[4].y
n4 = points[3].y / points[4].y
};
var drawDots = function drawDots(points) {
// draw dots
for (var i = 1; i < points.length - 1; i++) {
modelContext.lineWidth = 4; //
modelContext.beginPath();
modelContext.strokeStyle = 'hsla(' + 360 / 5 * i + ',100%,40%,1)';
modelContext.fillStyle = 'hsla(0,100%,100%,1)';
modelContext.arc(points[i].x, points[i].y, dotSize, 0, 2 * PI);
modelContext.stroke();
modelContext.fill();
}
};
var drawModel = function drawModel(ctx, points, n) {
var dx = points[1].x - points[0].x
var dy = points[1].y - points[0].y
var dist = sqrt(dx * dx + dy * dy)
var angle = atan2(dy, dx)
let x1 = points[1].x
let y1 = points[1].y
let x2 = round(cos(angle) * dist)
let y2 = round(sin(angle) * dist)
ctx.strokeStyle = 'hsla(0,0%,80%,1)';
ctx.lineWidth = 1;
ctx.beginPath();
ctx.moveTo(points[0].x,
points[0].y)
ctx.lineTo(points[1].x * m2,
points[1].y * n2)
ctx.lineTo(points[1].x * m3,
points[1].y * n3)
ctx.lineTo(points[1].x * m4,
points[1].y * n4)
ctx.lineTo(points[1].x,
points[1].y)
ctx.stroke();
ctx.strokeStyle = 'hsla(100,100%,80%,1)';
ctx.beginPath();
ctx.moveTo(points[0].x,
points[0].y)
ctx.lineTo(points[1].x,
points[1].y)
ctx.stroke()
if (n > 0 ) {
drawModel(resultContext, [{
x: points[0].x,
y: points[0].y
}, {
x: points[1].x * m2,
y: points[1].y * n2
}], n - 1);
drawModel(resultContext, [{
x: points[1].x * m2,
y: points[1].y * n2
}, {
x: points[1].x * m3,
y: points[1].y * n3
}], n - 1);
/*
drawModel(resultContext, [{
x: points[1].x * m3,
y: points[1].y * m3
}, {
x: points[1].x * m4,
y: points[1].y * n4
}], n - 1);
drawModel(resultContext, [{
x: points[1].x * m4,
y: points[1].y * m4
}, {
x: points[1].x,
y: points[1].y
}], n - 1);*/
} else {
ctx.strokeStyle = 'hsla(0,100%,50%,1)';
ctx.beginPath();
ctx.moveTo(points[0].x,
points[0].y)
ctx.lineTo(points[1].x * m2,
points[1].y * n2)
ctx.lineTo(points[1].x * m3,
points[1].y * n3)
ctx.lineTo(points[1].x * m4,
points[1].y * n4)
ctx.lineTo(points[1].x,
points[1].y)
ctx.stroke();
}
};
var draw = function draw() {
// clear both screens
modelContext.fillStyle = 'hsla(0,0%,100%,.5)';
modelContext.fillRect(0, 0, model.width, model.height);
resultContext.fillStyle = 'hsla(0,0%,100%,1)';
resultContext.fillRect(0, 0, result.width, result.height);
// draw model
drawModel(modelContext, [{
x: 0,
y: 200
}, {
x: 200,
y: 200
}]);
drawModel(resultContext, [{
x: 0,
y: 400
}, {
x: 400,
y: 400
}],iterations);
// draw the dots to indicate grabbing points
drawDots(points);
// redraw
requestAnimationFrame(draw);
};
window.addEventListener('resize', setSize);
model.addEventListener('mousemove', handleMove);
model.addEventListener('mousedown', grabPoint);
window.addEventListener('mouseup', releasePoint);
setSize();
draw();
Write a function to transform a point given the point, an old origin (the start of the model line segment), a new origin (the start of the child line segment), an angle and a scale (you have already calculated these):
var transformPoint = function transformPoint(point, oldOrigin, newOrigin, angle, dist) {
// subtract old origin to rotate and scale relative to it:
var x = point.x - oldOrigin.x;
var y = point.y - oldOrigin.y;
// rotate by angle
var sine = sin(angle)
var cosine = cos(angle)
var rotatedX = (x * cosine) - (y * sine);
var rotatedY = (x * sine) + (y * cosine);
// scale
rotatedX *= dist;
rotatedY *= dist;
// offset by new origin and return:
return {x: rotatedX + newOrigin.x - oldOrigin.x, y: rotatedY + newOrigin.y - oldOrigin.y }
}
You need to translate it by the old origin (so that you can rotate around it), then rotate, then scale, then translate by the new origin. Then return the point.
modelLogic[0] is the old origin because it defines the start of the segment in the model and points[0] is the new origin because that is what it is mapped to by the transformation.
You can call the function from your drawModel function like this:
let p1 = transformPoint(modelLogic[0], modelLogic[0], points[0], angle, dist);
let p2 = transformPoint(modelLogic[1], modelLogic[0], points[0], angle, dist);
let p3 = transformPoint(modelLogic[2], modelLogic[0], points[0], angle, dist);
let p4 = transformPoint(modelLogic[3], modelLogic[0], points[0], angle, dist);
let p5 = transformPoint(modelLogic[4], modelLogic[0], points[0], angle, dist);
and change your drawing code to use the returned points p1, p2 etc instead of x1, y1, x2, y2 etc.
Alternatively, you can create a single matrix to represent all of these translation, rotation and scaling transforms and transform each point by it in turn.