I am using ceres-solver with AutoDiffCostFunction. My cost function takes as parameter 1x3 vector and outputs 1x1 residual. How can I create opencv Mat out of my T* parameter vector? It may be either Jet or float. I tried following code, but get error "cannot conver from Jet to float"
struct ErrorFunc
{
template <typename T>
bool operator()(const T * const Kparams, T * residual) const // Kparams - [f, u, v]
{
cv::Mat K = cv::Mat::eye(3, 3, CV_32F);
K.at<float>(0, 0) = float(Kparams[0]); // error
K.at<float>(0, 2) = float(Kparams[1]); // error
K.at<float>(1, 1) = float(Kparams[0]); // error
K.at<float>(1, 2) = float(Kparams[2]); // error
Mat Hdot = K.inv() * H * K;
cv::decomposeHomographyMat(Hdot, K, rot, tr, norm); //want to call this opencv function
residual[0] = calcResidual(norm);
return true;
}
Mat H;
}
There is a way to get Eigen matrix out of T* matrix:
const Eigen::Matrix< T, 3, 3, Eigen::RowMajor> hom = Eigen::Map< const Eigen::Matrix< T, 3, 3, Eigen::RowMajor> >(Matrix)
but I want to call cv::decomposeHomographyMat
. How can I do this?
You cannot use an OpenCV method in a ceres::AutoDiffCostFunction in this way. The OpenCV method is not templated with type T as required by ceres to do the automatic differentiation. The float cast cannot be done because the ceres jet of Jacobians is a vector and not a scalar.
You have two options:
1) Use numerical differentiation: see http://ceres-solver.org/nnls_tutorial.html#numeric-derivatives
2) Use a templated library (e.g. Eigen http://eigen.tuxfamily.org/index.php?title=Main_Page) to rewrite the required homography decomposition