In the Byte Pair Encoding algorithm, there's a replacement step where it changes the character strings delimited by spaces to bigrams.
I.e., given a list of str
tuples as such:
[('t', 'h', 'i', 's', '\ue000'), ('c', 'o', 'r', 'p', 'u', 's', '\ue000'), ('i', 'n', '\ue000'), ('t', 'x', 't', 'f', 'i', 'l', 'e', '\ue000'), ('t', 'h', 'e', '\ue000'), ('s', 'e', 'n', 't', 'e', 'n', 'c', 'e', '\ue000'), ('b', 'a', 'r', '\ue000'), ('a', 'n', 'd', '\ue000'), ('i', 's', '\ue000'), ('f', 'o', 'o', '\ue000'), ('f', 'i', 'r', 's', 't', '\ue000'), ('a', '\ue000'), ('.', '\ue000')]
And a string tuple: ('i', 's')
How do I process the list such that it iterates through all the tuple keys and and replace ('i', 's')
with ('is')
?, i.e. the output Counter
will look something like this:
[('t', 'h', 'is', '\ue000'), ('c', 'o', 'r', 'p', 'u', 's', '\ue000'), ('i', 'n', '\ue000'), ('t', 'x', 't', 'f', 'i', 'l', 'e', '\ue000'), ('t', 'h', 'e', '\ue000'), ('s', 'e', 'n', 't', 'e', 'n', 'c', 'e', '\ue000'), ('b', 'a', 'r', '\ue000'), ('a', 'n', 'd', '\ue000'), ('is', '\ue000'), ('f', 'o', 'o', '\ue000'), ('f', 'i', 'r', 's', 't', '\ue000'), ('a', '\ue000'), ('.', '\ue000')]
I've tried this:
>>> cin
[('t', 'h', 'i', 's', '\ue000'), ('c', 'o', 'r', 'p', 'u', 's', '\ue000'), ('i', 'n', '\ue000'), ('t', 'x', 't', 'f', 'i', 'l', 'e', '\ue000'), ('t', 'h', 'e', '\ue000'), ('s', 'e', 'n', 't', 'e', 'n', 'c', 'e', '\ue000'), ('b', 'a', 'r', '\ue000'), ('a', 'n', 'd', '\ue000'), ('i', 's', '\ue000'), ('f', 'o', 'o', '\ue000'), ('f', 'i', 'r', 's', 't', '\ue000'), ('a', '\ue000'), ('.', '\ue000')]
>>> [tuple(' '.join(i).replace(' '.join(qtuple), ''.join(qtuple)).split()) for i in cin]
[('t', 'h', 'is', '\ue000'), ('c', 'o', 'r', 'p', 'u', 's', '\ue000'), ('i', 'n', '\ue000'), ('t', 'x', 't', 'f', 'i', 'l', 'e', '\ue000'), ('t', 'h', 'e', '\ue000'), ('s', 'e', 'n', 't', 'e', 'n', 'c', 'e', '\ue000'), ('b', 'a', 'r', '\ue000'), ('a', 'n', 'd', '\ue000'), ('is', '\ue000'), ('f', 'o', 'o', '\ue000'), ('f', 'i', 'r', 's', 't', '\ue000'), ('a', '\ue000'), ('.', '\ue000')]
but is there a more efficient way than looping through each word, then changing them to string to do a replace and splitting them again and then casting them back into tuples?
Would regex replacement be faster? Is there a way to work with the list of tuples without dealing with strings?
I've tried this and it seems like replacing the string with str.replace
is not the problem. It's really counting the bigrams and extracting them:
import io
from collections import Counter
import time
infile = 'big.txt' # comes from norvig.com/big.txt
n = 2
with io.open(infile, 'r', encoding='utf8') as fin:
text = fin.read().lower().replace(u' ', u"\uE000")
for j in range(1,6400):
unused_char = unichr(ord(u'\uE001') + j)
start = time.time()
char_bigrams = zip(*[text[i:] for i in range(n)])
bigram_time = time.time() - start
start = time.time()
most_freq_bigram = Counter(filter(lambda x: u"\uE000" not in x and '\n' not in x, char_bigrams)).most_common(1)[0][0]
max_time = time.time() - start
start = time.time()
text = text.replace(''.join(most_freq_bigram), unused_char)
replace_time = time.time() - start
print j, ''.join(most_freq_bigram), most_freq_bigram, bigram_time, max_time, replace_time
print text
This is tested on norvig.com/big.txt
[out]:
1 th (u't', u'h') 0.896255016327 3.28389787674 0.0253069400787
2 e (u'\ue002', u'e') 1.47053217888 3.16544914246 0.0280749797821
3 in (u'i', u'n') 1.13404297829 3.10529899597 0.0245559215546
4 an (u'a', u'n') 1.20013689995 3.63801002502 0.0242891311646
5 er (u'e', u'r') 1.41387891769 3.13376092911 0.0237591266632
6 on (u'o', u'n') 1.22826981544 3.06997895241 0.0227301120758
7 re (u'r', u'e') 1.21916294098 2.97599196434 0.0238041877747
8 at (u'a', u't') 1.14608097076 2.97988891602 0.0226521492004
9 en (u'e', u'n') 1.20747494698 2.88649988174 0.019054889679
10 ed (u'e', u'd') 1.16296696663 2.8995718956 0.0198271274567
11 is (u'i', u's') 1.17692494392 3.02292394638 0.0228500366211
12 d (u'\ue005', u'd') 1.13779211044 2.85169506073 0.0229239463806
I've already experimented with scikit-learn
CountVectorizer and i didn't seem to be as fast as using zip
, see Fast/Optimize N-gram implementations in python
Also, without them filter
operation in the Counter
step, it took even longer. The Counter operation is taking 3 seconds per iteration =(
How else can this operation be optimized?
Counter(filter(lambda x: u"\uE000" not in x and '\n' not in x, char_bigrams)).most_common(1)[0][0]
If you keep your string tuple to length 2 you could use reduce like this:
def cons_2(word_list, t):
j = ''.join(t)
f = lambda acc, e: acc[:-1] + (j,) if (acc[-1] == t[0] and e == t[1]) else acc + (e,)
return [reduce(f, i[1:], (i[0],)) for i in word_list]
print cons_2(cin, ('i', 's'))
No replacing is involved, f
is applied for every element i
, the value of cin
is not altered instead a new array is made and returned.
Details:
reduce
applies f
for every array element i
and returns a value to the accumulator acc
.f
: function to apply.i[1:]
: the array to iterate with all the elements but the first.(i[0],)
: the initial value of the accumulator, it's a tuple with the first value of the input tuple i
.f
: is a lambda
function with the accumulator acc
and the current element e
as inputs:
e
is equal to the second element of the string tuple, then return the tuple: acc[-1] + (j,)
else continue with a normal concatenation: acc + (e,)
.For string tuples > 2 the idea is the same but we have to manage the tuple's length l
.
def cons_n(word_list, t):
l = len(t)
j = ''.join(t)
f = lambda acc, e: acc[:-l] + (j, e,) if acc[-l:] == t or acc[:l] == t else acc + (e,)
return [reduce(f, i[l:], (i[:l])) for i in word_list]
print cons_n(cin, ('i', 's'))
This should work with n-length string tuples.
Details:
l
: reduce applies f
to the rest of the elements i[l:]
and the initial value of the accumulator is a tuple with the first l
elements: (i[:l])
.l
elements equal to the string tuple t
, if true then add the tuple: acc[:-l] + (j, e,)
else continue with normal concatenation: acc + (e,)
.This is a functional approach no data is modified but generated, so should be safe to have multiple processes at the same time (in theory, I'm no expert about the Python interpreter).
If the code above is too weird for people not into functional programming this is another approach:
def cons_n_iter(tuple_list, tuple_seq):
jnt = ''.join(tuple_seq)
lnt = len(tuple_seq)
res = []
for word in tuple_list:
acc = (word[:lnt])
for letter in word[lnt:]:
if acc[-lnt:] == tuple_seq or acc[:lnt] == tuple_seq:
acc = acc[:-lnt] + (jnt, letter,)
else:
acc += (letter,)
res += (acc,)
return res
print cons_n_iter(cin, ('i', 's'))
The logic is the same as the functional approach, same use of the accumulator. In this case the res
accumulator is explicit because in the examples above reduce
was taking care of it.