I have a lemma such as the following, with a higher-order parameter:
Require Import Coq.Lists.List.
Lemma map_fst_combine:
forall A B C (f : A -> C) (xs : list A) (ys : list B),
length xs = length ys ->
map (fun p => f (fst p)) (combine xs ys) = map f xs.
Proof.
induction xs; intros.
* destruct ys; try inversion H.
simpl. auto.
* destruct ys; try inversion H.
simpl. rewrite IHxs; auto.
Qed.
I would like to use this as with rewrite
. It works if I specify f
directly:
Parameter list_fun : forall {A}, list A -> list A.
Parameter length_list_fun : forall A (xs : list A), length (list_fun xs) = length xs.
Lemma this_works:
forall (xs : list bool),
map (fun p => negb (negb (fst p))) (combine xs (list_fun xs)) = xs.
Proof.
intros.
rewrite map_fst_combine with (f := fun x => negb (negb x))
by (symmetry; apply length_list_fun).
Admitted.
but I would really like not having to do that (in my case, I would like to use this lemma as part of a autorewrite
set). But
Lemma this_does_not:
forall (xs : list bool),
map (fun p => negb (negb (fst p))) (combine xs (list_fun xs)) = xs.
Proof.
intros.
rewrite map_fst_combine.
fails with
(*
Error:
Found no subterm matching "map (fun p : ?M928 * ?M929 => ?M931 (fst p))
(combine ?M932 ?M933)" in the current goal.
*)
Am I expecting too much here, or is there a way to make this work?
Let's define the composition operator (or you might want to reuse the one defined in Coq.Program.Basics
):
Definition comp {A B C} (g : B -> C) (f : A -> B) :=
fun x : A => g (f x).
Infix "∘" := comp (at level 90, right associativity).
Now, let's formulate the map_fst_combine
lemma in terms of composition:
Lemma map_fst_combine:
forall A B C (f : A -> C) (xs : list A) (ys : list B),
length xs = length ys ->
map (f ∘ fst) (combine xs ys) = map f xs.
Admitted. (* the proof remains the same *)
Now we need some helper lemmas for autorewrite
:
Lemma map_comp_lassoc A B C D xs (f : A -> B) (g : B -> C) (h : C -> D) :
map (fun x => h (g (f x))) xs = map ((h ∘ g) ∘ f) xs.
Proof. reflexivity. Qed.
Lemma map_comp_lassoc' A B C D E xs (f : A -> B) (g : B -> C) (h : C -> D) (i : D -> E) :
map (i ∘ (fun x => h (g (f x)))) xs = map ((i ∘ h) ∘ (fun x => g (f x))) xs.
Proof. reflexivity. Qed.
With the following hints
Hint Rewrite map_comp_lassoc map_comp_lassoc' map_fst_combine : mapdb.
we are able to do automatic rewrites and get rid of fst
and combine
:
Lemma autorewrite_works xs :
map (fun p => negb (negb (fst p))) (combine xs (list_fun xs)) = xs.
Proof.
autorewrite with mapdb.
(* 1st subgoal: map (negb ∘ negb) xs = xs *)
Admitted.
Lemma autorewrite_works' xs :
map (fun p => negb (negb (negb (negb (fst p))))) (combine xs (list_fun xs)) = xs.
Proof.
autorewrite with mapdb.
(* 1st subgoal: map (((negb ∘ negb) ∘ negb) ∘ negb) xs = xs *)
Admitted.