I have a dataset consisting of student marks in 2 subjects and the result if the student is admitted in college or not. I need to perform a logistic regression on the data and find the optimum parameter θ to minimize the loss and predict the results for the test data. I am not trying to build any complex non linear network here.
I have the loss function defined for logistic regression like this which works fine
predict(X) = sigmoid(X*θ)
loss(X,y) = (1 / length(y)) * sum(-y .* log.(predict(X)) .- (1 - y) .* log.(1 - predict(X)))
I need to minimize this loss function and find the optimum θ. I want to do it with Flux.jl or any other library which makes it even easier. I tried using Flux.jl after reading the examples but not able to minimize the cost.
My code snippet:
function update!(ps, η = .1)
for w in ps
w.data .-= w.grad .* η
print(w.data)
w.grad .= 0
end
end
for i = 1:400
back!(L)
update!((θ, b))
@show L
end
You can use either GLM.jl (simpler) or Flux.jl (more involved but more powerful in general). In the code I generate the data so that you can check if the result is correct. Additionally I have a binary response variable - if you have other encoding of target variable you might need to change the code a bit.
Here is the code to run (you can tweak the parameters to increase the convergence speed - I chose ones that are safe):
using GLM, DataFrames, Flux.Tracker
srand(1)
n = 10000
df = DataFrame(s1=rand(n), s2=rand(n))
df[:y] = rand(n) .< 1 ./ (1 .+ exp.(-(1 .+ 2 .* df[1] .+ 0.5 .* df[2])))
model = glm(@formula(y~s1+s2), df, Binomial(), LogitLink())
x = Matrix(df[1:2])
y = df[3]
W = param(rand(2,1))
b = param(rand(1))
predict(x) = 1.0 ./ (1.0+exp.(-x*W .- b))
loss(x,y) = -sum(log.(predict(x[y,:]))) - sum(log.(1 - predict(x[.!y,:])))
function update!(ps, η = .0001)
for w in ps
w.data .-= w.grad .* η
w.grad .= 0
end
end
i = 1
while true
back!(loss(x,y))
max(maximum(abs.(W.grad)), abs(b.grad[1])) > 0.001 || break
update!((W, b))
i += 1
end
And here are the results:
julia> model # GLM result
StatsModels.DataFrameRegressionModel{GLM.GeneralizedLinearModel{GLM.GlmResp{Array{Float64,1},Distributions.Binomial{Float64},GLM.LogitLink},GLM.DensePredChol{Float64,Base.LinAlg.Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}
Formula: y ~ 1 + s1 + s2
Coefficients:
Estimate Std.Error z value Pr(>|z|)
(Intercept) 0.910347 0.0789283 11.5338 <1e-30
s1 2.18707 0.123487 17.7109 <1e-69
s2 0.556293 0.115052 4.83513 <1e-5
julia> (b, W, i) # Flux result with number of iterations needed to converge
(param([0.910362]), param([2.18705; 0.556278]), 1946)