pythonmatplotlib3dheatmap

Plot 4D data as layered heatmaps in Python


I would like to create layered heatmaps using (x,y,z) coordinates and a fourth dimension, color-based, to correlate to intensity.

Each layer-related data sits in a text file with columns of x, y, z and G. The delimiter is white space. Apologies if it does not present properly.

XA 200 600 1200 1800 2400 3000 200 600 1200 1800 2400 3000

YA 0 0 0 0 0 0 600 600 600 600 600 600

ZA 600 600 600 600 600 600 600 600 600 600 600 600

GA 1.27 1.54 1.49 1.34 1.27 1.25 1.28 1.96 1.12 1.06 1.06 1.06

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

data = np.load(filename)

x = np.linspace(0,2400,num=6)
y = np.linspace(0,2400,num=11)
X,Y=np.meshgrid(x,y)
Z = data[:,:,0] * 1e-3

plt.contourf(X,Y,Z)
plt.colorbar()

How to read text files, create and superimpose heatmaps along the Z-axis?


Solution

  • Say you have two txt files, namely data-z600.txt and data-z1200.txt, in the same folder as your python script, whose contents are exactly

    data-z600.txt (yours)

    XA YA ZA GA
    200 0 600 1.27
    600 0 600 1.54
    1200 0 600 1.49
    1800 0 600 1.34
    2400 0 600 1.27
    3000 0 600 1.25
    200 600 600 1.28
    600 600 600 1.96
    1200 600 600 1.12
    1800 600 600 1.06
    2400 600 600 1.06
    3000 600 600 1.06
    

    and data-z1200.txt (invented on purpose)

    XA YA ZA GA
    200 0 1200 1.31
    600 0 1200 2
    1200 0 1200 1.63
    1800 0 1200 1.36
    2400 0 1200 1.31
    3000 0 1200 1.35
    200 600 1200 1.38
    600 600 1200 1.36
    1200 600 1200 1.2
    1800 600 1200 1.1
    2400 600 1200 1.1
    3000 600 1200 1.11
    

    Let's import all the required libraries

    # libraries
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import scipy.interpolate as si
    from matplotlib import cm
    import pandas as pd
    import numpy as np
    

    and define grids_maker, a function that does the job of preparing data contained in a given file, here targeted via the filepath argument.

    def grids_maker(filepath):
        # Get the data
        df = pd.read_csv(filepath, sep=' ')
    
        # Make things more legible
        xy = df[['XA', 'YA']]
        x  = xy.XA
        y  = xy.YA
        z  = df.ZA
        g  = df.GA
        reso_x = reso_y = 50
        interp = 'cubic' # or 'nearest' or 'linear'
    
        # Convert the 4d-space's dimensions into grids
        grid_x, grid_y = np.mgrid[
            x.min():x.max():1j*reso_x,
            y.min():y.max():1j*reso_y
        ]
    
        grid_z = si.griddata(
            xy, z.values,
            (grid_x, grid_y),
            method=interp
        )
    
        grid_g = si.griddata(
            xy, g.values,
            (grid_x, grid_y),
            method=interp
        )
    
        return {
            'x' : grid_x,
            'y' : grid_y,
            'z' : grid_z,
            'g' : grid_g,
        }
    

    Let's use grids_maker over our list of files and get the extrema of each file's 4th dimension.

    # Let's retrieve all files' contents
    fgrids = dict.fromkeys([
        'data-z600.txt',
        'data-z1200.txt'
    ])
    g_mins = []
    g_maxs = []
    
    for fpath in fgrids.keys():
        fgrids[fpath] = grids = grids_maker(fpath)
        g_mins.append(grids['g'].min())
        g_maxs.append(grids['g'].max())
    

    Let's create our (all-file unifying) color-scale

    # Create the 4th color-rendered dimension
    scam = plt.cm.ScalarMappable(
        norm=cm.colors.Normalize(min(g_mins), max(g_maxs)),
        cmap='jet' # see https://matplotlib.org/examples/color/colormaps_reference.html
    )
    

    ... and finally make/show the plot

    # Make the plot
    fig = plt.figure()
    ax  = fig.add_subplot(projection='3d')
    for grids in fgrids.values(): 
        scam.set_array([])   
        ax.plot_surface(
            grids['x'], grids['y'], grids['z'],
            facecolors=scam.to_rgba(grids['g']),
            antialiased=True,
            rstride=1, cstride=1, alpha=None
        )
    plt.show()
    

    enter image description here