I'm trying to solve a binary classification task. The training data set contains 9 features and after my feature engineering I ended having 14 features. I want to use a stacking classifier approach with
mlxtend.classifier.StackingClassifier by using 4 different classifiers, but when trying to predict the test datata set I got the error: ValueError: query data dimension must match training data dimension
%%time
models=[KNeighborsClassifier(weights='distance'),
GaussianNB(),SGDClassifier(loss='hinge'),XGBClassifier()]
calibrated_models=Calibrated_classifier(models,return_names=False)
meta=LogisticRegression()
stacker=StackingCVClassifier(classifiers=calibrated_models,meta_classifier=meta,use_probas=True).fit(X.values,y.values)
Remark: In my code I just programmed a function to return a list with calibrated classifiers StackingCVClassifier
I have checked this is not causing the error
Remark 2: I had already tried to perform a stacker from scratch with the same results so I had thought It was something wrong with my own stacker
from sklearn.linear_model import LogisticRegression
def StackingClassifier(X,y,models,stacker=LogisticRegression(),return_data=True):
names,ls=[],[]
predictions=pd.DataFrame()
for model in models:
names.append(str(model)[:str(model).find('(')])
for i,model in enumerate(models):
model.fit(X,y)
ls=model.predict_proba(X)[:,1]
predictions[names[i]]=ls
if return_data:
return predictions
else:
return stacker.fit(predictions,y)
Could you please help me to understand the correct usage of a stacking classifiers?
EDIT:
This is my code for calibrated classifier. This function takes a list of n classifiers and apply sklearn fucntion CalibratedClassifierCV
to each one and returns a list with n calibrated classifiers. You have an option to return as a zip list since this function is mainly intended to be used along with sklearn's VotingClassifier
def Calibrated_classifier(models,method='sigmoid',return_names=True):
calibrated,names=[],[]
for model in models:
names.append(str(model)[:str(model).find('(')])
for model in models:
clf=CalibratedClassifierCV(base_estimator=model,method=method)
calibrated.append(clf)
if return_names:
return zip(names,calibrated)
else:
return calibrated
I have tried your code with Iris dataset. It is working fine, I think the problem is with the dimension of your test data and not with the calibration.
from sklearn.linear_model import LogisticRegression
from mlxtend.classifier import StackingCVClassifier
from sklearn import datasets
X, y = datasets.load_iris(return_X_y=True)
models=[KNeighborsClassifier(weights='distance'),
SGDClassifier(loss='hinge')]
calibrated_models=Calibrated_classifier(models,return_names=False)
meta=LogisticRegression( multi_class='ovr')
stacker = StackingCVClassifier(classifiers=calibrated_models,
meta_classifier=meta,use_probas=True,cv=3).fit(X,y)
stacker.predict([X[0]])
#array([0])