The script retrain.py described in How to Retrain an Image Classifier for New Categories was run as
python retrain.py --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/2 --image_dir /tmp/test
and produced the output file /tmp/output_graph.pb
. Converting this with
tensorflowjs_converter --input_format=tf_saved_model --output_format=tfjs_graph_model /tmp/output_graph.pb /tmp/model
failed with
IOError: SavedModel file does not exist at: /tmp/output_graph.pb/{saved_model.pbtxt|saved_model.pb}
If the file output_graph.pb
is renamed to saved_model.pb
(by @edkeveked), the error changes to
RuntimeError: MetaGraphDef associated with tags 'serve' could not be found in SavedModel. To inspect available tag-sets in the SavedModel, please use the SavedModel CLI:
saved_model_cli
saved_model_cli show --dir .
reports an empty tag set.
How can this be fixed?
As hinted by @Ping Yu in Retrain image detection with MobileNet, you can use
python retrain.py --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/2 \
--image_dir /tmp/flower_photos --saved_model_dir /tmp/saved_retrained_model
tensorflowjs_converter --input_format=tf_saved_model \
--output_format=tfjs_graph_model \
--saved_model_tags=serve \
/tmp/saved_retrained_model/ /tmp/converted_model/
This saves the model using the saved model format.