I am using a pet example to optimize the parameters of a dense layer connected to a softplus and outputing the parameters of a negative binomial distribution. My process has been:
1) Build a custom class for the negative log likelihood loss with forward and backward methods. It gets as input the distribution parameters and a target and outputs the loss (negative log likelihood of the modeled distribution evaluated on the target):
from scipy.special import gamma, digamma, binom
from cntk.ops.functions import UserFunction
import numpy as np
class NegBin_Loss_Deep_NoSP(UserFunction):
def __init__(self, dis_params, target, name='NegBin_Loss_Deep_NoSP'):
super(NegBin_Loss_Deep_NoSP, self).__init__([dis_params, target], name=name)
def forward(self, arguments, device=None, outputs_to_retain=None):
self.miu = arguments[0][0][0]
self.alpha = arguments[0][0][1]
target = arguments[1][0]
#Compute the likelihood of the target
LL = binom(target+(1/self.alpha)-1,target)*((1/(1+self.alpha*self.miu))**(1/self.alpha))*(((self.alpha*self.miu)/(1+self.alpha*self.miu))**target)
log_ll = np.log(LL)
# Loss is the negative log likelihood
return target, -log_ll
def backward(self, state, root_gradients, variables):
target = state
for idx in range(len(self.inputs)):
if self.inputs[idx] in variables:
gradient = np.array([-(target-self.miu)/(self.alpha*(self.miu**2)+self.miu), # miu derivative
-((self.miu*self.alpha+1)*np.log(self.miu*self.alpha+1)+(-self.miu*digamma((1/self.alpha)+target)+self.miu*digamma(1/self.alpha)+target-self.miu)*self.alpha-digamma((1/self.alpha)+target)+digamma(1/self.alpha))/(self.miu*(self.alpha**3)+(self.alpha**2))])[:,0] # alpha derivative
variables[self.inputs[idx]] = gradient
return root_gradients*gradient
def infer_outputs(self):
return [output_variable(self.inputs[1].shape, self.inputs[0].dtype, self.inputs[1].dynamic_axes)]
@staticmethod
def deserialize(inputs, name, state):
f = NegBin_Loss_Deep_NoSP(inputs[0], inputs[1], name)
return f
2) Numeric testing of the forward and backward method with a custom script. Instantiating the above class, pass an input array and use forward and backward to update the input array and validate the decreasing loss. Working as intended
def grad_clipper(grad_v, trunc_max=0.005,trunc_min=-0.005):
if trunc_min >= trunc_max:
raise Exception("lower clipping bound has to be lower than upper bound")
for idx, value in enumerate(grad_v):
grad_v[idx] = max(min(value,trunc_max),trunc_min)
return grad_v
def convergence_test():
iter_num = 500000
noise_magnitude = 0.15
target = np.array([3.]) # [0.5, 0]
params = [5, 0.5]
v = C.input_variable(shape=(2,), needs_gradient=True)
t = C.input_variable(shape=(1,))
lr = 0.0005
a = NegBin_Loss_Deep_NoSP(v,t)
for i in range(iter_num):
target_new = (1+(0.5-np.random.rand())*noise_magnitude)*target
state, loss = a.forward([[params],target_new], [a.output], set([a.output]))
if i%1000 == 0:
print("loss", loss)
grad = grad_clipper(a.backward(state, np.ones_like(params), set([v])))
if i%1000 == 0:
print("params:", params, "gradient:", grad)
params = np.sum([params,[l * lr for l in grad]],axis=0)
params[1] = max(params[1], 5e-6)
convergence_test()
3) Build the pet example model and optimize the distribution parameters with CNTK's learner. I can't get the parameters of the dense layer to be updated, what am I missing?
import cntk as C
from cntk.layers import *
# Simple model to experiment gradient descent on the weights of the dense layer
def model0(x):
with default_options(initial_state = 0.1, enable_self_stabilization=True,init=glorot_uniform()):
m = Dense(2, activation = None)(x)
m = C.ops.softplus(m)
return m
# input sequences
x = C.input_variable(shape=(2,))
t = C.input_variable(shape=(1,))
# create the model
m0 = model0(x)
# define the learning rate
learning_rate = 0.02
lr_schedule = C.learning_parameter_schedule(learning_rate)
# define loss and error function
loss = NegBin_Loss_Deep_NoSP(m0.output, t)
error = NegBin_Loss_Deep_NoSP(m0.output, t)
# use fsadagrad optimizer
momentum_schedule = momentum_schedule = C.momentum_schedule(0.9)
learner = C.fsadagrad(m0.parameters,
lr = lr_schedule,
momentum = momentum_schedule,
unit_gain = True)
trainer = C.Trainer(m0, (loss, error), [learner])
loss_summary = []
start = time.time()
x1 = np.array([3,0.002], dtype=np.float32)
y1 = np.array([2.5], dtype=np.float32)
for epoch in range(0, 10):
trainer.train_minibatch({x: x1, t: y1})
if epoch % (10 / 10) == 0:
training_loss = trainer.previous_minibatch_loss_average
loss_summary.append(training_loss)
print("epoch: {}, loss: {:.5f}".format(epoch, training_loss))
4) Test the pet example with a native CNTK loss function, as suggested by snowflake. By adapting the stub in 3) I introduced a similar test with squared loss. I can confirm that in this way the model is updating its parameters and loss decreases with training. I believe this test circumscribes the problem to the custom loss function that I placed in 1)
x = C.input_variable(shape=(2,))
t = C.input_variable(shape=(2,)) # -> Changed in 4)
# create the model
m0 = model0(x)
# the learning rate
learning_rate = 0.02
lr_schedule = C.learning_parameter_schedule(learning_rate)
# loss function
loss = C.squared_error(m0.output, t) # -> Changed in 4)
error = C.squared_error(m0.output, t) # -> Changed in 4)
# use fsadagrad optimizer
momentum_schedule = C.momentum_schedule(0.9)
learner = C.fsadagrad(m0.parameters,
lr = lr_schedule,
momentum = momentum_schedule,
unit_gain = True)
trainer = C.Trainer(m0, (loss, error), [learner])
loss_summary = []
start = time.time()
x1 = np.array([3, 0.002], dtype=np.float32)
y1 = np.array([2.5, 0.005], dtype=np.float32) # -> Changed in 4)
for epoch in range(0, 10):
trainer.train_minibatch({x: x1, t: y1})
if epoch % (10 / 10) == 0:
training_loss = trainer.previous_minibatch_loss_average
loss_summary.append(training_loss)
print("epoch: {}, loss: {:.5f}".format(epoch, training_loss))
What is causing the loss function in 1) to not allow my model to train?
Thank you
EDIT: Solved, thanks snowflake!
Given that you loss function takes in multiple inputs. variables would be a dictionary of variables.
Doing this variables = gradient
overwrites the dictionary.
You should be doing something like variables[var] = ... # compute the gradient for var