I know that the Hessian matrix is a kind of second derivative test of functions involving more than one independent variable. How does one find the maximum or minimum of a function involving more than one variable? Is it found using the eigenvalues of the Hessian matrix or its principal minors?
You should have a look here: https://en.wikipedia.org/wiki/Second_partial_derivative_test
For an n-dimensional function f, find an x where the gradient grad f = 0. This is a critical point.
Then, the 2nd derivatives tell, whether x marks a local minimum, a maximum or a saddle point.
The Hessian H is the matrix of all combinations of 2nd derivatives of f.
In fact, the shortcut in 1) is generalized by 2)
For numeric calculations, some kind of optimization strategy can be used for finding x where grad f = 0.