I am trying to figure out the differences between PCA using Singular Value Decomposition as oppossed to PCA using Eigenvector-Decomposition.
Picture the following matrix:
B = np.array([ [1, 2],
[3, 4],
[5, 6] ])
When computing the PCA of this matrix B using eigenvector-Decomposition, we follow these steps:
C = Cov(B) = B^T * B / (m -1)
, where m = # rows of BPCs = X * eigen_vecs
When computing the PCA of matrix B using SVD, we follow these steps:
B = U * Sigma * V.T
PCs = U * Sigma
I have done both for the given matrix.
With eigenvector-Decomposition I obtain this result:
[[-2.82842712 0. ]
[ 0. 0. ]
[ 2.82842712 0. ]]
With SVD I obtain this result:
[[-2.18941839 0.45436451]
[-4.99846626 0.12383458]
[-7.80751414 -0.20669536]]
The result obtained with eigenvector-Decomposition is the result given as solution. So, why is the result obtained with the SVD different?
I know that: C = Cov(B) = V * (Sigma^2)/(m-1)) * V.T
and I have a feeling this might be related to why the two results are different. Still. Can anyone help me understand better?
Please see below a comparision for your matrix with sklearn.decomposition.PCA and numpy.linalg.svd. Can you compare or post how you derived SVD results.
Code for sklearn.decomposition.PCA:
from sklearn.decomposition import PCA
import numpy as np
np.set_printoptions(precision=3)
B = np.array([[1.0,2], [3,4], [5,6]])
B1 = B.copy()
B1 -= np.mean(B1, axis=0)
n_samples = B1.shape[0]
print("B1 is B after centering:")
print(B1)
cov_mat = np.cov(B1.T)
pca = PCA(n_components=2)
X = pca.fit_transform(B1)
print("X")
print(X)
eigenvecmat = []
print("Eigenvectors:")
for eigenvector in pca.components_:
if eigenvecmat == []:
eigenvecmat = eigenvector
else:
eigenvecmat = np.vstack((eigenvecmat, eigenvector))
print(eigenvector)
print("eigenvector-matrix")
print(eigenvecmat)
print("CHECK FOR PCA:")
print("X * eigenvector-matrix (=B1)")
print(np.dot(PCs, eigenvecmat))
Output for PCA:
B1 is B after centering:
[[-2. -2.]
[ 0. 0.]
[ 2. 2.]]
X
[[-2.828 0. ]
[ 0. 0. ]
[ 2.828 0. ]]
Eigenvectors:
[0.707 0.707]
[-0.707 0.707]
eigenvector-matrix
[[ 0.707 0.707]
[-0.707 0.707]]
CHECK FOR PCA:
X * eigenvector-matrix (=B1)
[[-2. -2.]
[ 0. 0.]
[ 2. 2.]]
numpy.linalg.svd:
print("B1 is B after centering:")
print(B1)
from numpy.linalg import svd
U, S, Vt = svd(B1, full_matrices=True)
print("U:")
print(U)
print("S used for building Sigma:")
print(S)
Sigma = np.zeros((3, 2), dtype=float)
Sigma[:2, :2] = np.diag(S)
print("Sigma:")
print(Sigma)
print("V already transposed:")
print(Vt)
print("CHECK FOR SVD:")
print("U * Sigma * Vt (=B1)")
print(np.dot(U, np.dot(Sigma, Vt)))
Output for SVD:
B1 is B after centering:
[[-2. -2.]
[ 0. 0.]
[ 2. 2.]]
U:
[[-0.707 0. 0.707]
[ 0. 1. 0. ]
[ 0.707 0. 0.707]]
S used for building Sigma:
[4. 0.]
Sigma:
[[4. 0.]
[0. 0.]
[0. 0.]]
V already transposed:
[[ 0.707 0.707]
[-0.707 0.707]]
CHECK FOR SVD:
U * Sigma * Vt (=B1)
[[-2. -2.]
[ 0. 0.]
[ 2. 2.]]