carduinointerruptavratmega32

How can the average of the ADC Readings be calculated?


The aim is to store the newest 10 ADC readings in an array and then calculate the average of them to be used elsewhere. Removing the oldest each time it is updated.

Regarding the LED timing, it must switch timing from 1s to 0.25s if ADC reading is within boundaries as written below, how can this be implemented correctly? I know my method works but can be done better. As for the LED's they must change patterns if a switch is pressed as you can see, which they do, but yet again I'm sure it can be done another simpler way!

Below is my code, Also I'm sure there are many an error and plenty of room for optimization, I will gladly accept it all!

#include <avr/io.h>
#define F_CPU 16000000UL
#include <util/delay.h>

#include <avr/io.h>
#include <avr/interrupt.h>
unsigned int timecount0;


unsigned int adc_reading;

volatile uint32_t timing = 1;
volatile uint32_t accumulator = 0;
volatile uint16_t average = 0;
volatile uint16_t samples = 0;


#define LED_RED PORTB = ((PORTB & ~0b00001110)|(0b00000010 & 0b00001110))
#define LED_GREEN PORTB = ((PORTB & ~0b00001110)|(0b00001000 & 0b00001110))
#define LED_BLUE PORTB = ((PORTB & ~0b00001110)|(0b00000100 & 0b00001110))
#define LED_RGB PORTB = ((PORTB & ~0b00001110)|(0b00001000 & 0b00001110))

#define DELAY_COUNT 6

volatile uint8_t portdhistory = 0xFF;


void Timer0_init(void)
{
    timecount0 = 0; // Initialize the overflow count. Note its scope
    TCCR0B = (5<<CS00); // Set T0 Source = Clock (16MHz)/1024 and put Timer in Normal mode

    TCCR0A = 0;         // Not strictly necessary as these are the reset states but it's good
    // practice to show what you're doing
    TCNT0 = 61;         // Recall: 256-61 = 195 & 195*64us = 12.48ms, approx 12.5ms
    TIMSK0 = (1<<TOIE0);    // Enable Timer 0 interrupt


    PCICR |= (1<<PCIE0);
    PCMSK0 |= (1<<PCINT0);
    sei();              // Global interrupt enable (I=1)

}


void ADC_init(void)
{
    ADMUX = ((1<<REFS0) | (0<<ADLAR) | (0<<MUX0));  /* AVCC selected for VREF,ADLAR set to 0, ADC0 as ADC input (A0)  */
    ADCSRA = ((1<<ADEN)|(1<<ADSC)|(1<<ADATE)|(1<<ADIE)|(7<<ADPS0));
                                        /* Enable ADC, Start Conversion, Auto Trigger enabled, 
                                           Interrupt enabled, Prescale = 32  */
    ADCSRB = (0<<ADTS0); /* Select AutoTrigger Source to Free Running Mode 
                            Strictly speaking - this is already 0, so we could omit the write to
                            ADCSRB, but included here so the intent is clear */
    sei(); //global interrupt enable
}


int main(void)
{
    ADC_init();
    Timer0_init();


    DDRD = 0b00100000;  /* set PORTD bit 5 to output  */
    DDRB = 0b00111110;  /* set PORTB bit 1,2,3,4,5 to output  */


    sei();              // Global interrupt enable (I=1)


    while(1)
    {
        if(!(PIND & (1<<PIND2)))
        {
            PORTD = PORTD |= (1<<PORTD5);
            PORTB = PORTB |= (1<<PORTB4);
            if(average>512)
            {
                PORTB = PORTB |= (1<<PORTB5);
            }

        }
        else
        {

            PORTD = PORTD &= ~(1<<PORTD5);
            PORTB = PORTB &= ~(1<<PORTB4);
        }




    }

}

ISR(TIMER0_OVF_vect)
{

        TCNT0 = 61;     //TCNT0 needs to be set to the start point each time
        ++timecount0;   // count the number of times the interrupt has been reached


        if(!(PIND & (1<<PIND3)))
        {           

        if (timecount0 >= 0)    // 40 * 12.5ms = 500ms
        {
            PORTB = ((PORTB & ~0b00001110)|(0b00000000 & 0b00001110));
        }

        if (timecount0 >= 8*timing) 
        {
            LED_RED;
        }

        if (timecount0 >= 16*timing)    
        {
            LED_GREEN;
        }

        if (timecount0 >= 24*timing)    
        {
            PORTB = ((PORTB & ~0b00001110)|(0b00000110 & 0b00001110));


        }
        if (timecount0 >= 32*timing)    
        {
            PORTB = ((PORTB & ~0b00001110)|(0b00001000 & 0b00001110));


        }
        if (timecount0 >= 40*timing)    
        {
            PORTB = ((PORTB & ~0b00001110)|(0b00001010 & 0b00001110));          

        }

        if (timecount0 >= 48*timing)    
        {
            PORTB = ((PORTB & ~0b00001110)|(0b00001100 & 0b00001110));      



        }

        if (timecount0 >= 56*timing)    
        {
            PORTB = ((PORTB & ~0b00001110)|(0b00001110 & 0b00001110));  


        }

        if (timecount0 >= 64*timing)
        {

            timecount0 = 0;

        }

        }
        else
        {
            if (timecount0 >= 0)
            {

                PORTB = ((PORTB & ~0b00001110)|(0b00000000 & 0b00001110)); //ALL OFF
            }

            if (timecount0 >= 8*timing) 
            {
                LED_RED;
                //PORTB = ((PORTB & ~0b00001110)|(0b00000010 & 0b00001110)); //RED
            }

            if (timecount0 >= 16*timing)    
            {
                LED_GREEN;


            }

            if (timecount0 >= 24*timing)    
            {
                LED_BLUE;



            }
            if (timecount0 >= 32*timing)
            {

                timecount0 = 0;

            }
        }           

}

ISR (ADC_vect)  //handles ADC interrupts

{

    adc_reading = ADC;   //ADC is in Free Running Mode
    accumulator+= adc_reading;


    if ((adc_reading > 768) & (adc_reading <= 1024))
    {
        timing = 10;

    }

    if ((adc_reading >= 0) & (adc_reading<= 768) )
    {
        timing = 2.5;

    }


    samples++;

    if(samples == 10)
    {
        average = accumulator/10;
        accumulator = 0;
        samples = 0;
    }


}





Solution

  • Depending on your processors, you may way to keep ISR() speedy and avoid expensive /,%.

    The LED stuff, I'd handle in a timer interrupt.

    #define N 10
    volatile unsigned sample[N];
    volatile unsigned count = 0;
    volatile unsigned index = 0;
    volatile unsigned sum = 0;
    
    ISR (ADC_vect)  {
      if (count >= N) {
        sum -= sample[index];
      } else {
        count++;
      }
      sample[index] = ADC;
      sum += sample[index];
      index++;
      if (index >= N) {
        index = 0;
      }
    }
    
    unsigned ADC_GetAvg(void) {
      block_interrupts();
      unsigned s = sum;
      unsigned n = count;
      restore_interrupts();
      if (n == 0) {
        return 0; //ADC ISR never called
      }
      return (s + n/2)/n;  // return rounded average
    }
    

    I'd recommend an integer version of a low pass filter than the average of the last N.