I am writing a code for running autoencoder on CIFAR10 dataset and see the reconstructed images.
The requirement is to create
Encoder with First Layer
Encoder with Second Layer
Decoder with First Layer
Decoder with Second Layer
I understand that
Also, is there any order in which I should be performing these operations?
I am attaching my code below ... I have attempted it to two different ways and hence getting different outputs (in terms of model summary and also model training graph)
Can someone please help me by explaining which is the correct method (Method-1 or Method-2)? Also, how do I understand which graph shows better model performance?
Method - 1
input_image = Input(shape=(32, 32, 3))
### Encoder
conv1_1 = Conv2D(64, (3, 3), activation='relu', padding='same')(input_image)
bnorm1_1 = BatchNormalization()(conv1_1)
mpool1_1 = MaxPooling2D((2, 2), padding='same')(conv1_1)
conv1_2 = Conv2D(16, (3, 3), activation='relu', padding='same')(mpool1_1)
borm1_2 = BatchNormalization()(conv1_2)
encoder = MaxPooling2D((2, 2), padding='same')(conv1_2)
### Decoder
conv2_1 = Conv2D(16, (3, 3), activation='relu', padding='same')(encoder)
bnorm2_1 = BatchNormalization()(conv2_1)
up1_1 = UpSampling2D((2, 2))(conv2_1)
conv2_2 = Conv2D(32, (3, 3), activation='relu', padding='same')(up1_1)
bnorm2_2 = BatchNormalization()(conv2_2)
up2_1 = UpSampling2D((2, 2))(conv2_2)
decoder = Conv2D(3, (3, 3), activation='sigmoid', padding='same')(up2_1)
model = Model(input_image, decoder)
model.compile(optimizer='adam', loss='binary_crossentropy')
model.summary()
history = model.fit(trainX, trainX,
epochs=50,
batch_size=1000,
shuffle=True,
verbose=2,
validation_data=(testX, testX)
)
As an output of the model summary, I get this
Total params: 18,851
Trainable params: 18,851
Non-trainable params: 0
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper right')
plt.show()
Method - 2
input_image = Input(shape=(32, 32, 3))
### Encoder
x = Conv2D(64, (3, 3), activation='relu', padding='same')(input_image)
x = BatchNormalization()(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
encoder = MaxPooling2D((2, 2), padding='same')(x)
### Decoder
x = Conv2D(16, (3, 3), activation='relu', padding='same')(encoder)
x = BatchNormalization()(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
x = UpSampling2D((2, 2))(x)
decoder = Conv2D(3, (3, 3), activation='sigmoid', padding='same')(x)
model = Model(input_image, decoder)
model.compile(optimizer='adam', loss='binary_crossentropy')
model.summary()
history = model.fit(trainX, trainX,
epochs=50,
batch_size=1000,
shuffle=True,
verbose=2,
validation_data=(testX, testX)
)
As an output of the model summary, I get this
Total params: 19,363
Trainable params: 19,107
Non-trainable params: 256
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper right')
plt.show()
In method 1, BatchNormalization layers does not exist in the compiled model, as the output of these layers are not used anywhere. You can check this by running model1.summary()
Method 2 is perfectly alright.
Order of the operations : Conv2D --> BatchNormalization --> MaxPooling2D is usually the common approach. Though either order would work since, since BatchNorm is just mean and variance normalization.
Edit:
For Conv2D --> BatchNormalization --> MaxPooling2D :
conv1_1 = Conv2D(64, (3, 3), activation='relu', padding='same')(input_image)
bnorm1_1 = BatchNormalization()(conv1_1)
mpool1_1 = MaxPooling2D((2, 2), padding='same')(bnorm1_1)
and then use mpool1_1 as input for next layer.
For Conv2D --> MaxPooling2D --> BatchNormalization:
conv1_1 = Conv2D(64, (3, 3), activation='relu', padding='same')(input_image)
mpool1_1 = MaxPooling2D((2, 2), padding='same')(conv1_1)
bnorm1_1 = BatchNormalization()(mpool1_1)
and then use bnorm1_1 as input for next layer.