pythonscipyinterpolationbspline

Difficulties to use scipy.interpolate BSpline: "TypeError: 'list' object cannot be interpreted as an integer"


From here:

Then, I should be allowed to perform:

import numpy as np
from scipy.interpolate import splev, splprep, BSpline
path =  [(2077.0, 712.0, 1136.6176470588234), (2077.0004154771536, 974.630482962754, 1313.735294117647), (2077.1630960823995, 1302.460574562254, 1490.8529411764707), (2078.1944091179635, 1674.693193015173, 1667.9705882352941), (2080.5096120056783, 2086.976611915444, 1845.0882352941176), (2085.1051468332066, 2711.054258877495, 2022.2058823529412), (1477.0846185328733, 2803.6223679691457, 2199.323529411765), (948.4693105162195, 2802.0390667447105, 2376.4411764705883), (383.8615403256207, 2804.843424134807, 2553.5588235294117), (-41.6669725172834, 2497.067373170676, 2730.676470588235), (-37.94311919744064, 1970.5155845437525, 2907.794117647059), (-35.97395938535092, 1576.713103381243, 3084.9117647058824), (-35.125016151504795, 1214.2319876178394, 3262.029411764706), (-35.000550767864524, 893.3910350913443, 3439.1470588235297), (-35.0, 631.2108462417168, 3616.264705882353), (-35.0, 365.60545190581837, 3793.3823529411766), (-35.0, 100.00005756991993, 3970.5)]
p = [[x for x,y,z in path], [y for x,y,z in path], [z for x,y,z in path]]
tck, u = splprep(p, k=3)
t, c0, k = tck
sp = BSpline(t, k, c0)

The goal is to be able to tune the B-Spline. But BSpline is not happy with my arguments:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/lalebarde/anaconda3/lib/python3.7/site-packages/scipy/interpolate/_bsplines.py", line 184, in __init__
    self.k = operator.index(k)
TypeError: 'list' object cannot be interpreted as an integer

If I check the shapes and types of the variables:

type(t)
<class 'numpy.ndarray'>
type(c0)
<class 'list'>
type(k)
<class 'int'>
t.shape
(21,)
np.array(c0).shape
(3, 17)

My usage of BSpline fails, from the documentation:

class scipy.interpolate.BSpline(t, c, k, extrapolate=True, axis=0)

t: ndarray, shape (n+k+1,) --> knots

c: ndarray, shape (>=n, …) --> spline coefficients - At least k+1 coefficients are required for a spline of degree k, so that n >= k+1. Additional coefficients, c[j] with j > n, are ignored.

k: int --> B-spline order

except for the coefficients c which should be a one dimension vector of the same length as my path p.

For example, sp = BSpline(t, c0[0], k) executes with no error, as with c0[1] or c0[2], but of course, I expect all coefficient computed by splprep to be used.

From here, it appears that the scipy interpolate manual is confusing:

tck[1]: x and y coordinates of the relocated control points

The manual says:

(t,c,k) a tuple containing the vector of knots, the B-spline coefficients, and the degree of the spline

Eventually, I performed a missuse of BSpline by mis interpreting its spline coefficients parameter.

So, how can I build a BSpline from the knots and coefficients returned by splprep with BSpline or with another function?


Solution

  • BSpline(t, k, c0) should be BSpline(t, c0, k)

    EDIT. In fact, there is one more problem: splprep returns the list of arrays and it's inconsistent with BSpline.

    Note the difference between splrep and splprep:

    Basically, splrep/splev are consistent, splrep/BSpline are consistent, but splprep/BSpline are not. It's a known wart and cannot be fixed in a backwards compatible way.

    If you want to use them together, you'll need to transpose the c array. Basing off your OP example:

    In [1]: import numpy as np
       ...: from scipy.interpolate import splev, splprep, BSpline
       ...: path =  [(2077.0, 712.0, 1136.6176470588234), (2077.0004154771536, 974.6
       ...: 30482962754, 1313.735294117647), (2077.1630960823995, 1302.460574562254,
       ...:  1490.8529411764707), (2078.1944091179635, 1674.693193015173, 1667.97058
       ...: 82352941), (2080.5096120056783, 2086.976611915444, 1845.0882352941176), 
       ...: (2085.1051468332066, 2711.054258877495, 2022.2058823529412), (1477.08461
       ...: 85328733, 2803.6223679691457, 2199.323529411765), (948.4693105162195, 28
       ...: 02.0390667447105, 2376.4411764705883), (383.8615403256207, 2804.84342413
       ...: 4807, 2553.5588235294117), (-41.6669725172834, 2497.067373170676, 2730.6
       ...: 76470588235), (-37.94311919744064, 1970.5155845437525, 2907.794117647059
       ...: ), (-35.97395938535092, 1576.713103381243, 3084.9117647058824), (-35.125
       ...: 016151504795, 1214.2319876178394, 3262.029411764706), (-35.0005507678645
       ...: 24, 893.3910350913443, 3439.1470588235297), (-35.0, 631.2108462417168, 3
       ...: 616.264705882353), (-35.0, 365.60545190581837, 3793.3823529411766), (-35
       ...: .0, 100.00005756991993, 3970.5)]
       ...: p = [[x for x,y,z in path], [y for x,y,z in path], [z for x,y,z in path]
       ...: ]
       ...: tck, u = splprep(p, k=3, s=0)      # ADDED s=0 for clarity
       ...: 
    
    In [2]: t, c, k = tck
    
    In [3]: c1 = np.asarray(c)
    
    In [4]: spl = BSpline(t, c1.T, k)         # Note the transpose
    
    In [5]: spl(u) - path                     # these should match, and they do
    Out[5]: 
    array([[ -4.54747351e-13,  -1.13686838e-13,  -4.54747351e-13],
           [  0.00000000e+00,  -1.13686838e-13,   0.00000000e+00],
           [ -4.54747351e-13,   0.00000000e+00,   0.00000000e+00],
           [  0.00000000e+00,  -2.27373675e-13,  -2.27373675e-13],
           [ -4.54747351e-13,   0.00000000e+00,   4.54747351e-13],
           [ -4.54747351e-13,   0.00000000e+00,  -6.82121026e-13],
           [  2.27373675e-13,   0.00000000e+00,   0.00000000e+00],
           [ -1.13686838e-13,  -4.54747351e-13,  -4.54747351e-13],
           [  0.00000000e+00,   0.00000000e+00,   0.00000000e+00],
           [  4.26325641e-14,  -9.09494702e-13,   0.00000000e+00],
           [  1.42108547e-14,  -4.54747351e-13,   0.00000000e+00],
           [  0.00000000e+00,   0.00000000e+00,   0.00000000e+00],
           [  7.10542736e-15,   0.00000000e+00,  -4.54747351e-13],
           [  0.00000000e+00,  -3.41060513e-13,   0.00000000e+00],
           [ -7.10542736e-15,  -1.13686838e-13,   0.00000000e+00],
           [  0.00000000e+00,   0.00000000e+00,   0.00000000e+00],
           [  0.00000000e+00,   0.00000000e+00,   0.00000000e+00]])
    

    This answer is based on https://github.com/scipy/scipy/issues/10389. The general suggestion over there applies: if you want interpolation, prefer make_interp_spline to splrep and splprep. If you want smoothing, there's only FITPACK at the moment, either splrep (which is BSpline compatible) or splprep (where you need to transpose manually).