I want to compare df and df_equal. df contains several individual data frames
import pandas as pd
df1 = pd.DataFrame([[ 'b', 'b', 'b' ]],
columns=['a', 'b', 'c'])
Output:
a b c
0 b b b
df2 = pd.DataFrame([[ 'x', 'x', 'x' ]],
columns=['a', 'b', 'c'])
Output:
a b c
0 x x x
df = pd.concat([df1, df2])
a b c
0 b b b
0 x x x
df_equal = pd.DataFrame([[ 'x', 'x', 'x' ]],
columns=['a', 'b', 'c'])
how can i check df for duplicate?
I tried .equals:
for row in df:
df.equals(exactly_equal)
my desired output:
False #first row in df
True #second row in df
You could just iterate over the rows, for example to compare every row of df to df2 (given that df2 only has one row):
for row in range(len(df)):
print((df.iloc[row, ].values == df2.values).all())
False
True