Using the steps documented in structured streaming pyspark, I'm unable to create a dataframe in pyspark from the Azure Event Hub I have set up in order to read the stream data.
Error message is: java.util.ServiceConfigurationError: org.apache.spark.sql.sources.DataSourceRegister: Provider org.apache.spark.sql.eventhubs.EventHubsSourceProvider could not be instantiated
I have installed the Maven libraries (com.microsoft.azure:azure-eventhubs-spark_2.11:2.3.12 is unavailable) but none appear to work: com.microsoft.azure:azure-eventhubs-spark_2.11:2.3.15 com.microsoft.azure:azure-eventhubs-spark_2.11:2.3.6
As well as ehConf['eventhubs.connectionString'] = sc._jvm.org.apache.spark.eventhubs.EventHubsUtils.encrypt(connectionString)
but the error message returned is:
java.lang.NoSuchMethodError: org.apache.spark.internal.Logging.$init$(Lorg/apache/spark/internal/Logging;)V
The connection string is correct as it is also used in a console application that writes to the Azure Event Hub and that works.
Can someone point me in the right direction, please. Code in use is as follows:
from pyspark.sql.functions import *
from pyspark.sql.types import *
# Event Hub Namespace Name
NAMESPACE_NAME = "*myEventHub*"
KEY_NAME = "*MyPolicyName*"
KEY_VALUE = "*MySharedAccessKey*"
# The connection string to your Event Hubs Namespace
connectionString = "Endpoint=sb://{0}.servicebus.windows.net/;SharedAccessKeyName={1};SharedAccessKey={2};EntityPath=ingestion".format(NAMESPACE_NAME, KEY_NAME, KEY_VALUE)
ehConf = {}
ehConf['eventhubs.connectionString'] = connectionString
# For 2.3.15 version and above, the configuration dictionary requires that connection string be encrypted.
# ehConf['eventhubs.connectionString'] = sc._jvm.org.apache.spark.eventhubs.EventHubsUtils.encrypt(connectionString)
df = spark \
.readStream \
.format("eventhubs") \
.options(**ehConf) \
.load()
To resolve the issue, I did the following: