Consider the following square:
You are given three constraints:
- All rectangles (A, B, C, D and E) have the same area;
- Their geometric layout constitutes a square; and
- The height of A is 2.
Now, I know this is very simple to solve by hand, but I thought it would be a very good example to show off the capabilities of CLP(Q/R) with Prolog:
SPOILER ALERT: If you want to first solve the puzzle by yourself, do not continue to read this, as there are constraints that will give away the solution.
Anyway, here's my attempt at defining (with I think include redundant constraints) this puzzle with CLP(Q/R):
:- use_module(library(clpr)).
solve(Eh) :-
A = B, B = C, C = D, D = E,
{ A >= 1, B >= 1, C >= 1, D >= 1, E >= 1,
Aw >= 1, Bw >= 1, Cw >= 1, Dw >= 1, Ew >= 1 },
{ Ah = 2 },
{ A = Ah * Aw,
B = Bh * Bw,
C = Ch * Cw,
D = Dh * Dw,
E = Eh * Ew },
{ (Bw + Cw) = Aw,
Dw = Cw,
(Ah + Bh) = Eh,
(Ch + Dh) = Bh,
(Aw + Ew) = Eh },
minimize(Eh).
Which when queried:
?- solve(Eh).
false.
...makes me sad. Such a beautiful example for a constraint solver... Anyone cares to undo my sadness?
Addendum: I used Mathematica and the FindMinimum
function to check for my constraints. It seems to be working:
domain = a >= 1 && b >= 1 && c >= 1 && d >= 1 && e >= 1 && ah == 2.0 && a == b == c == d == e && aw >= 1 && bw >= 1 && cw >= 1 && dw >= 1 && ew >= 1
rectangles = (a == ah*aw && b == bh*bw && c == ch*cw && d == dh*dw && e == eh*ew)
FindMinimum[{eh,
domain && rectangles &&
((bw + cw ) == aw && dw == cw && (ah + bh) == eh && (ch + dh) == bh && (aw + ew) == eh)},
{a, b, c, d, e, ah, aw, bh, bw, ch, cw, dh, dw, eh, ew}]
Answers:
{8., {a -> 12.8, b -> 12.8, c -> 12.8, d -> 12.8, e -> 12.8,
ah -> 2., aw -> 6.4, bh -> 6., bw -> 2.13333, ch -> 3.,
cw -> 4.26667, dh -> 3., dw -> 4.26667,
eh -> 8., ew -> 1.6}}
There is a old/new entry in CLP, clpBNR. You can install it in a recent version of SWI-Prolog.
I think it would require to group equations together into a single {}.
?- pack_install(clpBNR).
:- use_module(library(clpBNR)).
solve_(Eh) :-
Vs = [A,B,C,D,E, Aw,Bw,Cw,Dw,Ew, Ah,Bh,Ch,Dh,Eh],
Vs::real(1,100),
{ Ah == 2,
A is Ah * Aw,
B is Bh * Bw,
C is Ch * Cw,
D is Dh * Dw,
E is Eh * Ew,
A == B,
B == C,
C == D,
D == E,
(Bw + Cw) == Aw,
Dw == Cw,
(Ah + Bh) == Eh,
(Ch + Dh) == Bh,
(Aw + Ew) == Eh
},
solve(Vs).
?- solve_(Eh).
::(Eh, ...( 8.000000)) .