I use @tensorflow/tfjs-node
package for face-api.js
package to speed up things (as they said)
that is my code:
// import nodejs bindings to native tensorflow,
// not required, but will speed up things drastically (python required)
require('@tensorflow/tfjs-node');
// implements nodejs wrappers for HTMLCanvasElement, HTMLImageElement, ImageData
const { loadImage,Canvas, Image, ImageData } = require('canvas')
const faceapi = require('face-api.js');
// patch nodejs environment, we need to provide an implementation of
// HTMLCanvasElement and HTMLImageElement
faceapi.env.monkeyPatch({ Canvas, Image, ImageData })
// patch nodejs environment, we need to provide an implementation of
// HTMLCanvasElement and HTMLImageElement
faceapi.env.monkeyPatch({ Canvas, Image, ImageData })
Promise.all([
faceapi.nets.ssdMobilenetv1.loadFromDisk('./models'),
faceapi.nets.faceRecognitionNet.loadFromDisk('./models'),
faceapi.nets.faceLandmark68Net.loadFromDisk('./models')
])
.then(async () => {
const image1= await loadImage("https://enigmatic-waters-76106.herokuapp.com/1.jpeg")
const image2= await loadImage("https://enigmatic-waters-76106.herokuapp.com/8.jpeg")
const result = await faceapi.detectSingleFace(image1).withFaceLandmarks()
.withFaceDescriptor()
const singleResult = await faceapi
.detectSingleFace(image2)
.withFaceLandmarks()
.withFaceDescriptor()
const labeledDescriptors = [
new faceapi.LabeledFaceDescriptors(
'saied',
[result.descriptor]
)
]
const faceMatcher = new faceapi.FaceMatcher(labeledDescriptors)
const bestMatch = faceMatcher.findBestMatch(singleResult.descriptor)
console.log(labeledDescriptors[0].descriptors)
})
and when I run the code I get this error
TypeError: forwardFunc_1 is not a function at G:\test\node_modules@tensorflow\tfjs-core\dist\tf-core.node.js:3166:55 at G:\test\node_modules@tensorflow\tfjs-core\dist\tf-core.node.js:2989:22 at Engine.scopedRun (G:\test\node_modules@tensorflow\tfjs-core\dist\tf-core.node.js:2999:23) at Engine.tidy (G:\test\node_modules@tensorflow\tfjs-core\dist\tf-core.node.js:2988:21) at kernelFunc (G:\test\node_modules@tensorflow\tfjs-core\dist\tf-core.node.js:3166:29) at G:\test\node_modules@tensorflow\tfjs-core\dist\tf-core.node.js:3187:27 at Engine.scopedRun (G:\test\node_modules@tensorflow\tfjs-core\dist\tf-core.node.js:2999:23) at Engine.runKernelFunc (G:\test\node_modules@tensorflow\tfjs-core\dist\tf-core.node.js:3183:14) at mul_ (G:\test\node_modules\face-api.js\node_modules@tensorflow\tfjs-core\dist\ops\binary_ops.js:327:28) at Object.mul (G:\test\node_modules\face-api.js\node_modules@tensorflow\tfjs-core\dist\ops\operation.js:46: 29) (Use
node --trace-warnings ...
to show where the warning was created) (node:3496) UnhandledPromiseRejectionWarning: Unhandled promise rejection. This error originated either by throw ing inside of an async function without a catch block, or by rejecting a promise which was not handled with .cat ch(). To terminate the node process on unhandled promise rejection, use the CLI flag--unhandled-rejections=strict
(see https://nodejs.org/api/cli.html#cli_unhandled_rejections_mode). (rejection id: 1) (node:3496) [DEP0018] DeprecationWarning: Unhandled promise rejections are deprecated. In the future, promise rejections that are not handled will terminate the Node.js process with a non-zero exit code
When I delete require('@tensorflow/tfjs-node');
the code runs perfectly, but I need to import @tensorflow/tfjs-node
to make the process faster.
Below are my current setup versions: node: v14.15.4
npm: 6.14.10
@tensorflow/tfjs-node: v3.0.0 Python 2.7.15 (required for @tensorflow/tfjs-node)
face-api.js: v0.22.2
As explained in this github issue
The version of face-api.js you are using is not compatible with tfjs 2.0+ or 3.0+, only obsolete 1.x. Why it worked before you added tfjs-node? because face-api.js actually includes bundled version of tfjs-core 1.x. Once you added tfjs-node, it overrode global tf namespace, but its a much newer version and not compatible.
You must install obsolete tfjs-node 1.x OR follow the pointers they give to use a newer port of face-api.js that supports TF 2.0.