Encouraged by the knowledge I've gained from the answer to my previous post, I aim to generate Gray-codes of given length. The procedure hamming
seems to work correctly, however, the Picat system finds no solution. Where's the mistake here?
import cp.
main => gray(2).
gray(CodeLen) =>
CodeNr is 2**CodeLen,
Codes = new_array(CodeNr, CodeLen),
Codes :: 0..1,
foreach(CodeNr1 in 1..CodeNr)
CodeNr2 = cond(CodeNr1 == CodeNr, 1, CodeNr1 + 1),
hamming(Codes[CodeNr1], Codes[CodeNr2], 0, H),
H #= 1
% the Hamming distance between 2 consecutive codes is 1
end,
solve(Codes),
printf("%w\n", Codes).
hamming([], [], A, H) ?=> H #= A.
hamming([H1|T1], [H2|T2], A, H) ?=>
H1 #!= H2,
A1 #= A + 1,
hamming(T1, T2, A1, H).
hamming([H1|T1], [H2|T2], A, H) ?=>
H1 #= H2,
A1 #= A + 0,
hamming(T1, T2, A1, H).
The reason that the model don't print anything is that you are using list constructs ([H|T]
) on the array matrix Code
which is not allowed. You have to convert the rows of the matrix (which are arrays) to lists. This can be done in two ways:
Code
matrix to a list matrix with array_matrix_to_list_matrix()
(requires that the util
package is loaded):import util.
% ....
gray(CodeLen) =>
CodeNr is 2**CodeLen,
Codes = new_array(CodeNr, CodeLen).array_matrix_to_list_matrix, % <--
Codes :: 0..1,
% ....
hamming/4
to lists with theto_list()
function. E.g.: % ...
foreach(CodeNr1 in 1..CodeNr)
CodeNr2 = cond(CodeNr1 == CodeNr, 1, CodeNr1 + 1),
% hamming(Codes[CodeNr1], Codes[CodeNr2], 0, H), % Original
hamming(Codes[CodeNr1].to_list, Codes[CodeNr2].to_list, 0, H), % <---
H #= 1
% the Hamming distance between 2 consecutive codes is 1
end,
% ...
Update.
Here's a constraint model that solves the problem of generating different rows that was indicated in the comment. It uses a simpler version of hamming_distance
by just counting the number of different bits with sum
. Also, for symmetry, I require that the first and last row also have a Hamming distance of 1. (This was in the original code.)
To require different rows, the constraint to_num/3
is used to converts a number to digits in an array (given a base, here 2). These numbers (which must be distinct) are in the CodesNum
list.
import cp,util.
main =>
go.
go ?=>
gray(5),
nl,
% fail,
nl.
go => true.
% First solution for N=2..10
go2 ?=>
foreach(N in 2..10)
println(n=N),
if time(gray(N)) then
true
else
println(nope)
end,
nl
end,
nl.
go2 => true.
gray(CodeLen) =>
CodeNr is 2**CodeLen,
println(codeNr=CodeNr),
Codes = new_array(CodeNr, CodeLen).array_matrix_to_list_matrix,
Codes :: 0..1,
CodesNum = new_list(CodeNr), % array -> integer
CodesNum :: 0..CodeNr,
foreach(CodeNr1 in 1..CodeNr)
to_num(Codes[CodeNr1],2,CodesNum[CodeNr1]),
CodeNr2 = cond(CodeNr1 == CodeNr, 1, CodeNr1 + 1),
hamming_distance(Codes[CodeNr1], Codes[CodeNr2], 1),
end,
% around the corner
% hamming_distance(Codes[1], Codes[CodeNr],1),
all_different(CodesNum),
CodesNum[1] #= 0, % symmetry breaking
Vars = CodesNum ++ Codes.vars,
solve($[ff,updown],Vars),
printf("%w\n", Codes),
println(codesNum=CodesNum),nl.
% Hamming distance of As and Bs
hamming_distance(As, Bs,Diff) =>
Diff #= sum([(A #!= B) : {A,B} in zip(As,Bs)]).
% Convert Num to/from a list of digits in List (base Base)
to_num(List, Base, Num) =>
Len = length(List),
Num #= sum([List[I]*Base**(Len-I) : I in 1..Len]).
to_num(List, Num) =>
to_num(List, 10, Num).
It solves N=4 in 0s:
n = 4
codeNr = 16
[[0,0,0,0],[1,0,0,0],[1,1,0,0],[1,1,1,0],[1,1,1,1],[1,1,0,1],[1,0,0,1],[1,0,1,1],[1,0,1,0],[0,0,1,0],[0,1,1,0],[0,1,1,1],[0,0,1,1],[0,0,0,1],[0,1,0,1],[0,1,0,0]]
codesNum = [0,8,12,14,15,13,9,11,10,2,6,7,3,1,5,4]
CPU time 0.0 seconds.
The model solves N=2..7 (first solution) quite fast, but it struggles with N=8, and I don't have the time to test different search heuristics to make it faster.
Here's some another approach for solving the gray code but without constraint modelling and it's much faster: http://hakank.org/picat/gray_code.pi
Update2 Here's a much faster version of hamming/4
. It use a reification (boolean) variable B
to check if H1
and H2
are different and can then be used as the value to add to A0
.
hamming2([], [], A, A).
hamming2([H1|T1], [H2|T2], A0, H) :-
B :: 0..1,
H1 #!= H2 #<=> B #= 1,
A1 #= A0 + B,
hamming2(T1, T2, A1, H).