In the above article they have the following image:
And, they wanted to obtain an output like the following:
I ran the following script:
import cv2
window_name = 'image'
img = cv2.imread("photo.png")
cv2.imshow(window_name, img)
cv2.waitKey(0)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
cv2.imshow(window_name, edges)
cv2.waitKey(0)
color = cv2.bilateralFilter(img, 9, 250, 250)
cartoon = cv2.bitwise_and(color, color, mask=edges)
cv2.imshow(window_name, cartoon)
cv2.waitKey(0)
Firstly, the script is very slow.
Secondly, the output is not what they promised would be:
How can I fix these two issues?
Brief description
I'm so interested in your question, so I tried your suggested website's code, the code you posted, and myself googled a few to tried. Even discussed with my peers, my professor who taught introductory image processing/computer vision using C# that I took couple years ago.
Discussion feedback
Sadly they all respond the same and like what I initially thought, it's not possible to transform/convert directly into the second picture in your post, the posted second picture is most likely to be an artistic graphics photo. Well, maybe you dig deeper maybe there's actually a module or library that can actually transform/convert it 100% like the second picture.
Examples code testing
So, I begin trying out the contents of your posted website, snipped a bit there, adjusted some, but overall, no where near to the second cartoon picture.
import cv2
from matplotlib import pyplot as plt
# Reading image
img = cv2.imread("img.png")
plt.imshow(img)
# Converting to RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
# Detecting edges of the input image
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 9)
edges = cv2.adaptiveThreshold(
gray, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 9, 9
)
# Cartoonifying the image
color = cv2.bilateralFilter(img, 9, 250, 250)
cartoon = cv2.bitwise_and(color, color, mask=edges)
plt.imshow(cartoon)
plt.savefig("cartoonify.png")
plt.show()
cv2.imwrite()
.import cv2
import matplotlib.pyplot as plt
window_name = "image"
img = cv2.imread("img.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
edges = cv2.adaptiveThreshold(
gray, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
9, 9
)
color = cv2.bilateralFilter(img, 9, 250, 250)
cartoon = cv2.bitwise_and(color, color, mask=edges)
cv2.imshow(window_name, cartoon)
cv2.waitKey(0)
cv2.imwrite("cartoon_op.png", cartoon)
cv2.waitKey(0)
cv2.destroyAllWindows()
import cv2
import numpy as np
from tkinter.filedialog import *
photo = askopenfilename()
img = cv2.imread(photo)
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
grey = cv2.medianBlur(grey, 5)
edges = cv2.adaptiveThreshold(grey, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
#cartoonize
color = cv2.bilateralFilter(img, 9, 250, 250)
cartoon = cv2.bitwise_and(color, color, mask = edges)
cv2.imshow("Image", img)
cv2.imshow("Cartoon", cartoon)
#save
cv2.imwrite("cartoon-git.png", cartoon)
cv2.waitKey(0)
cv2.destroyAllWindows()
import numpy as np
import cv2
file_name = "elon.jpg"
def resize_image(image):
scale_ratio = 0.3
width = int(image.shape[1] * scale_ratio)
height = int(image.shape[0] * scale_ratio)
new_dimensions = (width, height)
resized = cv2.resize(
image, new_dimensions,
interpolation=cv2.INTER_AREA
)
return resized
def find_countours(image):
contoured_image = image
gray = cv2.cvtColor(contoured_image, cv2.COLOR_BGR2GRAY)
edged = cv2.Canny(gray, 30, 100)
contours, hierarchy = cv2.findContours(
edged, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE
)
cv2.drawContours(
contoured_image, contours,
contourIdx=-1, color=1,
thickness=1
)
cv2.imshow("Image after contouring", contoured_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
return contoured_image
def color_quantization(image, k=4):
z = image.reshape((-1, 3))
z = np.float32(z)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,
10000, 0.0001)
compactness, label, center = cv2.kmeans(z, k, None, criteria,
1, cv2.KMEANS_RANDOM_CENTERS)
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((image.shape))
return res2
if __name__ == '__main__':
image = cv2.imread(file_name)
resized_image = resize_image(image)
coloured = color_quantization(resized_image)
contoured = find_countours(coloured)
final_image = contoured
save_q = input("Save the image? [y]/[n]: ")
if save_q == "y":
cv2.imwrite("cartoonized_" + file_name, final_image)
print("Image saved!")
Original Elon.jpg
Cartoonized Elon.jpg
Wrapping up
I hope this long answer that sounded like no definitive answer helps, it's just what I found interested and decided to share the process of discovering it.