I'm trying to access the data in a GRIB2 file at a specific longitude and latitude. I have been following along with this tutorial (https://www.youtube.com/watch?v=yLoudFv3hAY) approximately 2:52 but my GRIB file is formatted differently to the example and uses different variables
import xarray as xr
import pygrib
ds=xr.open_dataset('testdata.grb2', engine='cfgrib', filter_by_keys={'typeOfLevel': 'heightAboveGround', 'topLevel':2})
ds
This prints:
<xarray.Dataset>
Dimensions: (latitude: 361, longitude: 720)
Coordinates:
time datetime64[ns] ...
step timedelta64[ns] ...
heightAboveGround float64 ...
* latitude (latitude) float64 90.0 89.5 89.0 ... -89.0 -89.5 -90.0
* longitude (longitude) float64 0.0 0.5 1.0 1.5 ... 358.5 359.0 359.5
valid_time datetime64[ns] ...
Data variables:
t2m (latitude, longitude) float32 ...
sh2 (latitude, longitude) float32 ...
r2 (latitude, longitude) float32 ...
I then try to use imshow to index along the latitude and longitude (t2m?) dimension using:
t0_ds = ds.isel(t2m={200,200})
which gives this error:
ValueError: Dimensions {'t2m'} do not exist. Expected one or more of Frozen({'latitude': 361, 'longitude': 720})
Obviously there is an error in the way I'm using isel but I have tried many variations and I can't find much information about this particular error
You can access the closest datapoint to a specific latitude/longitude using:
lat = #yourlatitude
lon = #yourlongitude
ds_loc = ds.sel(latitude = lat, longitude = lon, method = 'nearest')
isel is used to access point by index, ie:
ds_loc = ds.isel(latitude = 200)
will return a subset along the 200th latitude value.