I am using the GPU radix sort algorithm of the CUB library to sort N 32-bit unsigned integers whose values all utilize only k of their 32 bits, starting from the least significant bit.
Thus, I specify the bit subrange [begin_bit, end_bit) when calling cub::DeviceRadixSort::SortKeys in hopes of improving the sorting performance. I am using the latest release of CUB (1.16.0).
However, SortKeys crashes (not deterministically, but almost always) and reports an illegal memory access error when trying to sort 1 billion keys with certain specified bit ranges of [begin_bit=0, end_bit=k), and k = {20,19,18}, e.g. ./cub_sort_test 1000000000 0 20
I tested this on a Volta and an Ampere NVIDIA GPU with CUDA versions 11.4 and 11.2 respectively. Has anyone encountered this previously, and/or know a fix? Here is the minimal, reproducable example code:
// HOW TO BUILD: nvcc -O3 -std=c++17 -Xcompiler -fopenmp cub_sort_test.cu -o cub_sort_test
#include <cub/cub.cuh>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/system/cuda/experimental/pinned_allocator.h>
#include <algorithm>
#include <chrono>
#include <iostream>
#include <parallel/algorithm>
#include <random>
#include <vector>
#include <iostream>
#define DEBUG
#ifdef DEBUG
#define CheckCudaError(instruction) \
{ AssertNoCudaError((instruction), __FILE__, __LINE__); }
#else
#define CheckCudaError(instruction) instruction
#endif
inline void AssertNoCudaError(cudaError_t error_code, const char* file, int line) {
if (error_code != cudaSuccess) {
std::cout << "Error: " << cudaGetErrorString(error_code) << " " << file << " " << line << "\n";
}
}
template <typename T>
using PinnedHostVector = thrust::host_vector<T, thrust::system::cuda::experimental::pinned_allocator<T>>;
std::mt19937 SeedRandomGenerator(uint32_t distribution_seed) {
const size_t seeds_bytes = sizeof(std::mt19937::result_type) * std::mt19937::state_size;
const size_t seeds_length = seeds_bytes / sizeof(std::seed_seq::result_type);
std::vector<std::seed_seq::result_type> seeds(seeds_length);
std::generate(seeds.begin(), seeds.end(), [&]() {
distribution_seed = (distribution_seed << 1) | (distribution_seed >> (-1 & 31));
return distribution_seed;
});
std::seed_seq seed_sequence(seeds.begin(), seeds.end());
return std::mt19937{seed_sequence};
}
int main(int argc, char* argv[]) {
if (argc != 4) {
std::cerr << "Usage: ./cub-sort-test <num_keys> <gpu_id> <bit_entropy>" << std::endl;
return -1;
}
size_t num_keys = std::stoull(argv[1]);
int gpu = std::stoi(argv[2]);
size_t bit_entropy = std::stoi(argv[3]);
cudaStream_t stream;
CheckCudaError(cudaSetDevice(gpu));
CheckCudaError(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
PinnedHostVector<uint32_t> keys(num_keys);
#pragma omp parallel num_threads(64)
{
uint32_t max = (1 << bit_entropy) - 1;
if (bit_entropy == sizeof(uint32_t) * 8) {
max = std::numeric_limits<uint32_t>::max();
} else if (bit_entropy == 1) {
max = 2;
}
std::mt19937 random_generator = SeedRandomGenerator(2147483647 + static_cast<size_t>(omp_get_thread_num()));
std::uniform_real_distribution<double> uniform_dist(0, max);
#pragma omp for schedule(static)
for (size_t i = 0; i < num_keys; ++i) {
keys[i] = static_cast<uint32_t>(uniform_dist(random_generator));
}
}
thrust::device_vector<uint32_t> device_vector(num_keys);
thrust::copy(keys.begin(), keys.end(), device_vector.begin());
CheckCudaError(cudaDeviceSynchronize());
size_t num_temporary_bytes = 0;
cub::DeviceRadixSort::SortKeys(
NULL, num_temporary_bytes, thrust::raw_pointer_cast(device_vector.data()),
thrust::raw_pointer_cast(device_vector.data()), num_keys, 0, bit_entropy + 1, stream); // bit subrange is [begin_bit, end_bit), thus bit_entropy + 1
uint8_t* temporary_storage = nullptr;
CheckCudaError(cudaMalloc(reinterpret_cast<void**>(&temporary_storage), num_temporary_bytes));
cub::DeviceRadixSort::SortKeys(
(void*)temporary_storage, num_temporary_bytes, thrust::raw_pointer_cast(device_vector.data()),
thrust::raw_pointer_cast(device_vector.data()), num_keys, 0, bit_entropy + 1, stream);
CheckCudaError(cudaStreamSynchronize(stream));
thrust::copy(device_vector.begin(), device_vector.end(), keys.begin());
CheckCudaError(cudaFree(temporary_storage));
if (std::is_sorted(keys.begin(), keys.end()) == false) {
std::cout << "Error: Sorting failed." << std::endl;
}
return 0;
}
The problem with your code is that you do not use SortKeys
correctly. SortKeys
does not work in-place. You need to provide a separate output buffer for the sorted data.
#include <cub/cub.cuh>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/system/cuda/experimental/pinned_allocator.h>
#include <algorithm>
#include <chrono>
#include <iostream>
#include <parallel/algorithm>
#include <random>
#include <vector>
#include <iostream>
#define DEBUG
#ifdef DEBUG
#define CheckCudaError(instruction) \
{ AssertNoCudaError((instruction), __FILE__, __LINE__); }
#else
#define CheckCudaError(instruction) instruction
#endif
inline void AssertNoCudaError(cudaError_t error_code, const char* file, int line) {
if (error_code != cudaSuccess) {
std::cout << "Error: " << cudaGetErrorString(error_code) << " " << file << " " << line << "\n";
}
}
template <typename T>
using PinnedHostVector = thrust::host_vector<T, thrust::system::cuda::experimental::pinned_allocator<T>>;
std::mt19937 SeedRandomGenerator(uint32_t distribution_seed) {
const size_t seeds_bytes = sizeof(std::mt19937::result_type) * std::mt19937::state_size;
const size_t seeds_length = seeds_bytes / sizeof(std::seed_seq::result_type);
std::vector<std::seed_seq::result_type> seeds(seeds_length);
std::generate(seeds.begin(), seeds.end(), [&]() {
distribution_seed = (distribution_seed << 1) | (distribution_seed >> (-1 & 31));
return distribution_seed;
});
std::seed_seq seed_sequence(seeds.begin(), seeds.end());
return std::mt19937{seed_sequence};
}
int main(int argc, char* argv[]) {
if (argc != 4) {
std::cerr << "Usage: ./cub-sort-test <num_keys> <gpu_id> <bit_entropy>" << std::endl;
return -1;
}
size_t num_keys = std::stoull(argv[1]);
int gpu = std::stoi(argv[2]);
size_t bit_entropy = std::stoi(argv[3]);
cudaStream_t stream;
CheckCudaError(cudaSetDevice(gpu));
CheckCudaError(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
PinnedHostVector<uint32_t> keys(num_keys);
#pragma omp parallel num_threads(64)
{
uint32_t max = (1 << bit_entropy) - 1;
if (bit_entropy == sizeof(uint32_t) * 8) {
max = std::numeric_limits<uint32_t>::max();
} else if (bit_entropy == 1) {
max = 2;
}
std::mt19937 random_generator = SeedRandomGenerator(2147483647 + static_cast<size_t>(omp_get_thread_num()));
std::uniform_real_distribution<double> uniform_dist(0, max);
#pragma omp for schedule(static)
for (size_t i = 0; i < num_keys; ++i) {
keys[i] = static_cast<uint32_t>(uniform_dist(random_generator));
}
}
thrust::device_vector<uint32_t> device_vector(num_keys);
thrust::copy(keys.begin(), keys.end(), device_vector.begin());
thrust::device_vector<uint32_t> device_vector_sorted(num_keys);
CheckCudaError(cudaDeviceSynchronize());
size_t num_temporary_bytes = 0;
cub::DeviceRadixSort::SortKeys(
NULL, num_temporary_bytes, thrust::raw_pointer_cast(device_vector.data()),
thrust::raw_pointer_cast(device_vector_sorted.data()), num_keys, 0, bit_entropy + 1, stream); // bit subrange is [begin_bit, end_bit), thus bit_entropy + 1
uint8_t* temporary_storage = nullptr;
CheckCudaError(cudaMalloc(reinterpret_cast<void**>(&temporary_storage), num_temporary_bytes));
cub::DeviceRadixSort::SortKeys(
(void*)temporary_storage, num_temporary_bytes, thrust::raw_pointer_cast(device_vector.data()),
thrust::raw_pointer_cast(device_vector_sorted.data()), num_keys, 0, bit_entropy + 1, stream);
CheckCudaError(cudaStreamSynchronize(stream));
thrust::copy(device_vector_sorted.begin(), device_vector_sorted.end(), keys.begin());
CheckCudaError(cudaFree(temporary_storage));
if (std::is_sorted(keys.begin(), keys.end()) == false) {
std::cout << "Error: Sorting failed." << std::endl;
}
return 0;
}
If the unsorted array is no longer used after sorting and can be overwritten, I recommend to use the overload which takes a DoubleBuffer<Keys>
to reduce memory usage. Otherwise, a temporary keys array will be allocated since the const Key*
input cannot be overwritten.