I am new to plotly dash. I am trying to create an interactive dashboard where I can filter the colorbar to see the upper values for example if the value is 3000 it was red, so if I type 3000 as input, it is still red but the graph will not show values less than 3000. I am able to add the filtering option but when I filter(I used zmin in go heatmap) the colorscale also changes. Can I keep the previous colorscale so that if I choose zmin, it refreshes the graph with the original colorscale but filters values greater than zmin? Here is the code I have written so far -
app.layout = html.Div(children=[
html.H1(children='Title'),
dcc.Graph(
id='graph',
figure=fig
),
dcc.Input(
id="input", type="number", value=0
)
])
@app.callback(
Output('graph', 'figure'),
Input('input', 'value')
)
def update_figure(input):
frames = []
for d, i in enumerate(sorted(timestamp_list)):
frames.append(
go.Frame(
name=time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime(int(i) / 1000)),
data=[
go.Heatmap(z=df_dict[i],
x=df_dict[i].columns,
y=df_dict[i].index,
zmin=input,
zmax=max(value_list))
]
)
)
yaxis_name = kind.split("_")[0]
xaxis_name = kind.split("_")[1]
fig = go.Figure(
data=frames[0].data,
frames=frames,
layout=go.Layout(
autosize=True,
height=800,
yaxis={"title": yaxis_name, "dtick": 1},
xaxis={"title": xaxis_name, "tickangle": 45, "side": 'top'},
),
)
# finally, create the slider
fig.update_layout(
updatemenus=[{
'buttons': [
{
'args': [None, {'frame': {'duration': 500, 'redraw': True},
'transition': {'duration': 500, 'easing': 'quadratic-in-out'}}],
'label': 'Play',
'method': 'animate'
},
{
'args': [[None], {'frame': {'duration': 0, 'redraw': False},
'mode': 'immediate',
'transition': {'duration': 0}}],
'label': 'Pause',
'method': 'animate'
}
],
'direction': 'left',
'pad': {'r': 10, 't': 100},
'showactive': False,
'type': 'buttons',
'x': 0.1,
'xanchor': 'right',
'y': 0,
'yanchor': 'top'
}],
sliders=[{"steps": [{"args": [[f.name], {"frame": {"duration": 0, "redraw": True},
"mode": "immediate", }, ],
"label": f.name, "method": "animate", }
for f in frames],
}]
)
return fig
Here is the sample output I get-[![enter image description here][1]][1] After filtering- [![enter image description here][2]][2]
I am not completely sure I understood what you mean, but isn't it enough to just filter your data? I also don't have an example of how you data look like, but why don't you try filtering your data frame before you plot?
data_to_plot = frames[frames['your_column'] > zmin]