pythoneventsmultiprocessingpython-multiprocessingmediapipe

MediaPipe pose estimator with multiprocessing hangs on its process function


I am currently trying to implement MediaPipe pose estimator as an independent event-based process with Python's multiprocessing library, but it hangs on the MediaPipe's Pose.process() function.

I input the frame with another process (readFrames). Whenever a frame is captured, it is written into a shared object and tells the MediaPipe process (MediaPipeRunner) to start working on the current image:

def readFrames(ns, event):
  #initialize the video capture object
  cap = cv2.VideoCapture(0)
  while cap.isOpened():
    ret, frame = cap.read()
    if ret:
        ns.frame = frame
        event.set()
        cv2.imshow('Orijinal Frame', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            cap.release()
            cv2.destroyAllWindows()
            return -1
    else:
        return


class MediaPipeRunner(mproc.Process):

    def __init__(self, name, nsFrame, nsMediaPipe, eventWait, eventPublish):
        super(MediaPipeRunner, self).__init__()
        
        # Specify a name for the instance
        self.name = name
        
        # Input and output namespaces
        self.nsFrame = nsFrame
        self.nsMediaPipe = nsMediaPipe

        # Waiter and publisher events
        self.eventWait = eventWait
        self.eventPublish = eventPublish

        # Create a pose estimator from MediaPipe
        mp_pose = mp.solutions.pose

        # Specify pose estimator parameters (static)
        static_image_mode = True
        model_complexity = 1
        enable_segmentation = True  # DONT CHANGE
        min_detection_confidence = 0.5

        # Create a pose estimator here
        self.pose = mp_pose.Pose(
        static_image_mode=static_image_mode,
        model_complexity=model_complexity,
        enable_segmentation=enable_segmentation,
        min_detection_confidence=min_detection_confidence,
        smooth_landmarks=False,
        )

    def run(self):
        while True:
            eventFrame.wait()
            
            # This part is where it gets stuck:
            results = self.pose.process(cv2.cvtColor(self.nsFrame.frame, cv2.COLOR_BGR2RGB))

            if not results.pose_landmarks:
                continue

            self.nsMediaPipe.segmentation = results.segmentation_mask
            eventMP.set()

This is how I bind the processes, namespaces and events:

if __name__=="__main__":

    mgr = mproc.Manager()

    nsFrame = mgr.Namespace()
    nsMP = mgr.Namespace()

    eventFrame = mproc.Event()
    eventMP = mproc.Event()

    camCap = mproc.Process(name='camCap', target=readFrames, args=(nsFrame, eventFrame, ))
    camCap.daemon=True

    mpCap = MediaPipeRunner('mpCap', nsFrame, nsMP, eventFrame, eventMP, )
    mpCap.daemon=True

    camCap.start()
    mpCap.start()

    camCap.join()
    mpCap.join()

Am I taking a wrong step on processes or MediaPipe is not getting along with the multiprocessing library of Python?

Any help will be appreciated, thanks in advance :)

P.S.: I installed MediaPipe by pip and version 0.8.9.1 is present.


Solution

  • I have found the problem: The process function behaves correctly when with structure is used in Python (idk why):

        with mp_pose.Pose(
            static_image_mode=static_image_mode,
            model_complexity=model_complexity,
            enable_segmentation=enable_segmentation,
            min_detection_confidence=min_detection_confidence,
            smooth_landmarks=False,
            ) as pose:
    

    Now this part works!

        results = self.pose.process(cv2.cvtColor(self.nsFrame.frame, cv2.COLOR_BGR2RGB))
    

    I hope it might be helpful for you.