im trying to bind the Object Tracking with Deep Sort in my Project and i need to get the boxes, scores, classes, nums.
Loading Pretrained Yolov5 model:
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
model.eval()
Getting the Prediction:
result = model(img)
print(result.shape)
print(result)
torch.Size([8, 6])
tensor([[277.50000, 379.25000, 410.50000, 478.75000, 0.90625, 2.00000],
[404.00000, 205.12500, 498.50000, 296.00000, 0.88623, 2.00000],
[262.50000, 247.75000, 359.50000, 350.25000, 0.88281, 2.00000],
[210.50000, 177.75000, 295.00000, 261.75000, 0.83154, 2.00000],
[195.50000, 152.50000, 257.75000, 226.00000, 0.78223, 2.00000],
[137.00000, 146.75000, 168.00000, 162.00000, 0.55713, 2.00000],
[ 96.00000, 130.12500, 132.50000, 161.12500, 0.54199, 2.00000],
[ 43.56250, 89.56250, 87.68750, 161.50000, 0.50146, 5.00000]], device='cuda:0')
tensor([[277.50000, 379.25000, 410.50000, 478.75000, 0.90625, 2.00000],
[404.00000, 205.12500, 498.50000, 296.00000, 0.88623, 2.00000],
[262.50000, 247.75000, 359.50000, 350.25000, 0.88281, 2.00000],
[210.50000, 177.75000, 295.00000, 261.75000, 0.83154, 2.00000],
[195.50000, 152.50000, 257.75000, 226.00000, 0.78223, 2.00000],
[137.00000, 146.75000, 168.00000, 162.00000, 0.55713, 2.00000],
[ 96.00000, 130.12500, 132.50000, 161.12500, 0.54199, 2.00000],
[ 43.56250, 89.56250, 87.68750, 161.50000, 0.50146, 5.00000]], device='cuda:0')
so now my question is how do i get the boxes, scores, classes, nums in each variables? I need that for the Object Tracking
I tried it once with the example on Pytorch Documentation:
result.xyxy[0]
but in my Case I get an Error:
Tensor has no attribute xyxy
The output from the model is a torch tensor and has no xyxy method. You need to extract the values manually. Either you can go through each detection one by one:
import torch
det = torch.rand(8, 6)
for *xyxy, conf, cls in det:
print(*xyxy)
print(conf)
print(cls)
or you can slice the detections tensor by:
xyxy = det[:, 0:4]
conf = det[:, 4]
cls = det[:, 5]
print(xyxy)
print(conf)
print(cls)