I have the following peano number written with GADTs:
type z = Z of z
type 'a s = Z | S of 'a
type _ t = Z : z t | S : 'n t -> 'n s t
module T = struct
type nonrec 'a t = 'a t
end
type 'a nat = 'a t
type e = T : 'n nat -> e
The following function to decode a 'a nat
(or 'a t
) into the number it encoded, works:
let to_int : type n. n t -> int =
let rec go : type n. int -> n t -> int =
fun acc n -> match n with Z -> acc | S n -> go (acc + 1) n
in
fun x -> go 0 x
but if I try to rewrite it almost exactly the same this way:
let to_int2 (type a) (a: a nat) : int =
let rec go (type a) (acc : int) (x : a nat) : int =
match x with
| Z -> acc
| S v -> go (acc + 1) v
in
go 0 a
I get a scope error. What's the difference between the two functions?
138 | | S v -> go (acc + 1) v
^
Error: This expression has type $0 t but an expression was expected of type
'a
The type constructor $0 would escape its scope
The root issue is polymorphic recursion, GADTs are a red herring here.
Without an explicit annotation, recursive functions are not polymorphic in their own definition.
For instance, the following function has type int -> int
let rec id x =
let _discard = lazy (id 0) in
x;;
because id
is not polymorphic in
let _discard = lazy (id 0) in
and thus id 0
implies that the type of id
is int -> 'a
which leads to id
having type int -> int
.
In order to define polymorphic recursive function, one need to add an explicit universally quantified annotation
let rec id : 'a. 'a -> 'a = fun x ->
let _discard = lazy (id 0) in
x
With this change, id
recovers its expected 'a -> 'a
type.
This requirement does not change with GADTs. Simplifying your code
let rec to_int (type a) (x : a nat) : int =
match x with
| Z -> 0
| S v -> 1 + to_int v
the annotation x: a nat
implies that the function to_int
only works with a nat
, but you are applying to an incompatible type (and ones that lives in a too narrow scope but that is secondary).
Like in the non-GADT case, the solution is to add an explicit polymorphic annotation:
let rec to_int: 'a. 'a nat -> int = fun (type a) (x : a nat) ->
match x with
| Z -> 0
| S v -> 1 + to_int v
Since the form 'a. 'a nat -> int = fun (type a) (x : a nat) ->
is both a mouthful and quite often needed with recursive function on GADTs, there is a shortcut notation available:
let rec to_int: type a. a nat -> int = fun x ->
match x with
| Z -> 0
| S v -> 1 + to_int v
For people not very familiar with GADTs, this form is the one to prefer whenever one write a GADT function. Indeed, not only this avoids the issue with polymorphic recursion, writing down the explicit type of a function before trying to implement it is generally a good idea with GADTs.
See also https://ocaml.org/manual/polymorphism.html#s:polymorphic-recursion , https://ocaml.org/manual/gadts-tutorial.html#s%3Agadts-recfun , and https://v2.ocaml.org/manual/locallyabstract.html#p:polymorpic-locally-abstract .