From the book "ANSI Common Lisp", p. 100 ch 6.1 :
Suppose that a marble is a structure with a single field called color. The function UNIFORM-COLOR takes a list of marbles and returns their color, if they all have the same color, or nil if they have different colors. UNIFORM-COLOR is usable on a setf place in order to make the color of each element of list of marbles be a specific color.
(defstruct marble color)
(defun uniform-color (lst &optional (color (and lst (marble-color (car lst)))))
(every #'(lambda (m) (equal (marble-color m) color)) lst))
(defun (setf uniform-color) (color lst)
(mapc #'(lambda (m) (setf (marble-color m) color)) lst))
How could you implement the defun (setf uniform)
in a tail-recursive way instead of using the mapc
applicative operator ?
This question is specific to the case of (defun (setf ...))
, it is not a question about how recursion or tail-recursion work in general.
i guess you can just call setf recursively:
(defun (setf all-vals) (v ls)
(when ls
(setf (car ls) v)
(setf (all-vals (cdr ls)) v)))
CL-USER> (let ((ls (list 1 2 3 4)))
(setf (all-vals ls) :new-val)
ls)
;;=> (:NEW-VAL :NEW-VAL :NEW-VAL :NEW-VAL)
this is how sbcl expands this:
(defun (setf all-vals) (v ls)
(if ls
(progn
(sb-kernel:%rplaca ls v)
(let* ((#:g328 (cdr ls)) (#:new1 v))
(funcall #'(setf all-vals) #:new1 #:g328)))))
For the specific case of marbles:
(defun (setf uniform-color) (color lst)
(when lst
(setf (marble-color (car lst)) color)
(setf (uniform-color (cdr lst)) color)))