I have a dataframe like this:
timestamp | id | data1 |
---|---|---|
2022-12-12 10:03:02 | a1 | x1 |
2022-12-12 10:03:02 | a2 | c1 |
2022-12-12 10:04:12 | a1 | x2 |
2022-12-12 10:04:12 | a2 | c2 |
2022-12-12 10:05:02 | a1 | x3 |
2022-12-12 10:05:02 | a2 | c3 |
2022-12-12 10:09:15 | a1 | x4 |
2022-12-12 10:09:15 | a2 | c4 |
2022-12-12 10:12:15 | a1 | x5 |
2022-12-12 10:12:15 | a2 | c5 |
I only need rows that have newest data within the five minutes interval, where the start time is set to be some time by me, for example in the above table is 10:00:00. So, with the above table, I would like to have a final table like this:
timestamp | id | data1 |
---|---|---|
2022-12-12 10:04:12 | a1 | x2 |
2022-12-12 10:04:12 | a2 | c2 |
2022-12-12 10:09:15 | a1 | x4 |
2022-12-12 10:09:15 | a2 | c4 |
2022-12-12 10:12:15 | a1 | x5 |
2022-12-12 10:12:15 | a2 | c5 |
I tried:
df.groupby(['id', 'timestamp']).resample("5min").last()
But this is not what I want.
Create a new column (i.e., interval
) that represents the five-minute interval for each and then use .groupby()
with .last()
.
start_time = pd.to_datetime("10:00:00")
df['interval'] = (df['timestamp'] - start_time).dt.total_seconds() // 300
grouped_df = df.groupby(['interval', 'id']).last()
final_df = grouped_df.reset_index().drop(columns=['interval'])
output:
id timestamp data1 0 a1 2022-12-12 10:04:12 x2 1 a2 2022-12-12 10:04:12 c2 2 a1 2022-12-12 10:09:15 x4 3 a2 2022-12-12 10:09:15 c4 4 a1 2022-12-12 10:12:15 x5 5 a2 2022-12-12 10:12:15 c5